Obviously,
$$|X_n Y_n-XY| \leq |Y| \cdot |X_n-X|+ |X_n| \cdot |Y_n-Y|.$$
By the triangle inequality,
$$\mathbb{P}(|X_n Y_n-XY| \geq \epsilon) \leq \mathbb{P}(|Y| \cdot |X_n-X| \geq \epsilon/2) + \mathbb{P}(|X_n| \cdot |Y_n-Y| \geq \epsilon/2).$$
We estimate the terms separately. For the first one, note that
$$\mathbb{P}(|Y| \cdot |X_n-X| \geq \epsilon/2)\leq \mathbb{P}(|X_n-X| \geq \epsilon/(2M)) + \mathbb{P}(|Y| \geq M)$$
for any $M>0$. Letting $n \to \infty$, we find
$$\limsup_{n \to \infty} \mathbb{P}(|Y| \cdot |X_n-X| \geq \epsilon/2) \leq \mathbb{P}(|Y| \geq M).$$
Since this holds for any $M$, we can let $M \to \infty$ and, e.g. by the dominated convergence theorem, it follows that the limit $\lim_{n \to \infty} \mathbb{P}(|Y| \cdot |X_n-X| \geq \epsilon/2)$ exists and equals $0$.
The second term is a little bit more difficult, but the idea is the same. Again, we estimate
$$\mathbb{P}(|X_n| \cdot |Y_n-Y| \geq \epsilon/2) \leq \mathbb{P}(|Y_n-Y| \geq \epsilon/(2M)) + \mathbb{P}(|X_n| \geq M). \tag{1}$$
Now, by the triangle inequality,
$$\mathbb{P}(|X_n| \geq M) \leq \mathbb{P}(|X_n-X| \geq M/2) + \mathbb{P}(|X| \geq M/2). \tag{2}$$
Plugging $(2)$ into $(1)$ yields
$$\mathbb{P}(|X_n| \cdot |Y_n-Y| \geq \epsilon/2) \leq \mathbb{P}(|Y_n-Y| \geq \epsilon/(2M))+ \mathbb{P}(|X_n-X| \geq M/2) + \mathbb{P}(|X| \geq M/2).$$
The first two terms on the right-hand side converge to $0$ as $n \to \infty$ because $X_n \to X$ and $Y_n \to Y$ in probability. After letting $n \to \infty$ we also let $M \to \infty$ and this proves
$$\lim_{n \to \infty} \mathbb{P}(|X_n| \cdot |Y_n-Y| \geq \epsilon/2) =0.$$