$$\color{brown}{\textbf{Transformations}}$$
Let WLOG the inequality
$$q=\dfrac p{1-p}\in(0,1)\tag1$$
is valid. Otherwise, the corresponding opposite events can be reversed.
This allows to present the issue expression in the form of
\begin{align}
&S(n,p)=1 - (1-p)^n\sum_{k=0}^{n} {n \choose k} q^k\log\left(1+q^{n-2k}\right),\tag2\\[4pt]
\end{align}
or
\begin{align}
&=1 - (1-p)^n\sum_{k=0}^{n} {n \choose k}q^kq^{n-2k} - (1-p)^n\sum_{k=0}^{n} {n \choose k}q^k\left(\log\left(1+q^{n-2k}\right)-q^{n-2k}\right)\\[4pt]
&=1 - (1-p)^n(1+q)^n - (1-p)^n\sum_{k=0}^{n} {n \choose k}q^k\left(\log\left(1+q^{n-2k}\right)-q^{n-2k}\right)\\[4pt]
&S(n,p)= - (1-p)^n\sum_{k=0}^{n} {n \choose k}q^k\left(\log\left(1+q^{n-2k}\right)-q^{n-2k}\right).\tag3\\[4pt]
\end{align}
Formula $(3)$ can simplify the calculations, because it does not contain the difference of the closed values.
$$\color{brown}{\textbf{How to calculate this.}}$$
Note that the sum of $(3)$ contains both the positive and the negative degrees of $q.$ This means that in the case $n\to \infty$ the sum contains the terms of the different scale.
The calculations in the formula $(3)$ can be divided on the two parts.
$\color{green}{\textbf{The Maclaurin series.}}$
The Maclaurin series for the logarithmic part converges when the term $\mathbf{\color{blue}{q^{n-2k} < 1}}.$ This corresponds with the values $k<\frac n2$ in the case $\mathbf{q<1}$ and with the values $k>\frac n2$ in the case $\mathbf{q>1}.$ Then the Maclaurin series in the form of
$$\log(1+q^{n-2k}) = \sum_{i=1}^\infty\frac{(-1)^{i+1}}{i}q^{(2n-k)i}\tag4$$
can be used.
If $\mathbf{\color{blue}{q^{n-2k} > 1}},$ then
$$\log(1+q^{n-2k}) = \log(q^{2n-k}(1+q^{k-2n})) = (2n-k)\log q + \log(1+q^{k-2n}).\tag5$$
If $\mathbf{\color{blue}{q^{n-2k} = 1}},$ then $LHS(4) = \log2.$
If $\mathbf{\color{blue}{q^{n-2k} \lesssim 1}},$ then
$$\log(1+q^{2n-k}) = \log\frac{1+r}{1-r} = 2r\sum_{i=0}^\infty\frac{(-1)^i}{2i+1}r^{2i},\quad \text{ where } r=\frac{q^{2n-k}}{2+q^{2n-k}}\approx\frac{q^{2n-k}}3,\tag6$$
and can be used some terms of the series.
$\color{green}{\textbf{The double summations.}}$
After the substitution of the $(4)$ or $(5)$ to $(3)$ the sums can be rearranged. For example,
$$\sum_{k=0}^{L}{n \choose k}q^k\sum_{i=1}^\infty\frac{(-1)^{i+1}}{i}q^{(2n-k)i}= \sum_{i=1}^\infty\frac{(-1)^{i+1}}{i}\sum_{k=0}^{L}{n \choose k}q^kq^{(2n-k)i}$$
$$= q^{n+1}\sum_{i=1}^\infty\frac{(-1)^{i+1}}{i}\sum_{k=0}^{L}{n \choose k}\left(q^{i+1}\right)^{n-k},$$
wherein the order of the summation can be chosen, taking in account the given data.
The reason i take the integral to $-\infty$ is to get the whole normal distribution covered. Plotting this functions shows us that it can take on values that are not zero in the negative axis
– Kees Til Aug 04 '18 at 21:16