This answer follows roughly the suggestion of @MichaelLugo in the comments.
We are interested in the sum
$$H = -\sum_{k=0}^n {n\choose k}p^k(1-p)^{n-k}
\log_2\left[{n\choose k}p^k(1-p)^{n-k} \right].$$
For $n$ large we can use the de-Moivre-Laplace theorem,
$$H \simeq
-\int_{-\infty}^\infty dx \,
\frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right]
\log_2\left\{\frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right] \right\},$$
where $\mu = n p$ and $\sigma^2 = n p(1-p)$.
Thus,
$$\begin{eqnarray*}
H &\simeq&
\int_{-\infty}^\infty dx \,
\frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right]
\left[\log_2(\sqrt{2\pi}\sigma) + \frac{(x-\mu)^2}{2\sigma^2} \log_2 e \right] \\
&=& \log_2(\sqrt{2\pi}\sigma) + \frac{\sigma^2}{2\sigma^2} \log_2 e \\
&=& \frac{1}{2} \log_2 (2\pi e\sigma^2)
\end{eqnarray*}$$
and so
$$H \simeq \frac{1}{2} \log_2 \left[2\pi e n p(1-p)\right].$$
Higher order terms can be found, essentially by deriving a more careful (and less simple) version of de-Moivre-Laplace.