Let a $C^1$ function $f$ and
$$
F(x,u,v,t)=\int_{u}^{v}f(x,t) dx.
$$
Use the implicit differentiation ruler in function
$$
\varphi(x)=F(x,u(x),v(x),t(x))= \int_{u(x)}^{v(x)}f(x,t(x)) dx .
$$
Here, $u=u(x)$, $v=v(x)$, $t=t(x)$ are $C^1$ functions.
Implicit differentiation rule: For all fix $x_0$ we have
$u_0=u(x_0)$, $v_0=v(x_0)$, $t_0=t(x_0)$ and
\begin{align}
\left.\frac{d\varphi(x)}{dx}\right|_{x=x_0}=
&
\left.\frac{\partial F(x,u_0,v_0,t_0)}{\partial x}\right|_{x=x_0}
\\
+
&
\left.\frac{\partial F (x_0,u(x),v_0,t_0)}{\partial x}\right|_{x=x_0}
\\
+
&
\left.\frac{\partial F (x_0,u(x),v_0,t_0)}{\partial x}\right|_{x=x_0}
\\
+
&
\left.\frac{\partial F (x_0,u_0,v(x),t_0)}{\partial x}\right|_{x=x_0}
\\
+
&
\left.\frac{\partial F (x_0,u_0,v_0,t(x))}{\partial x}\right|_{x=x_0}
\\
\end{align}
By chain rule, we get:
\begin{align}
\left.\frac{d\varphi(x)}{dx}\right|_{x=x_0}=
&
\left(\left.\frac{\partial F(x,u_0,v_0,t_0)}{\partial x}\right|_{x=x_0}\right)
\cdot
\left(\left.\frac{dx}{dx}\right|_{x=x_0}\right)
\\
+
&
\left(\left.\frac{\partial F (x_0,u,v_0,t_0)}{\partial u}\right|_{u=u_0}\right)
\cdot
\left(\left.\frac{du}{dx}\right|_{x=x_0}\right)
\\
+
&
\left(\left.\frac{\partial F (x_0,u_0,v,t_0)}{\partial v}\right|_{v=v_0}\right)
\cdot
\left(\left.\frac{dv}{dx}\right|_{x=x_0}\right)
\\
+
&
\left(\left.\frac{\partial F (x_0,u_0,v_0,t)}{\partial t}\right|_{t=t_0}\right)
\cdot
\left(\left.\frac{dt}{dx}\right|_{x=x_0}\right)
\end{align}
Then the result fellowing by Leibniz rule and fundametal teorem of calculus.