Although one can use measure theory (e.g. the dominated convergence theorem) to prove this, there is however a direct approach since we are dealing with a continuous function.
Let $t_0 \in [c,d]$ and $\varepsilon>0$. Since $\displaystyle\frac{\partial\phi}{\partial t}(s,t_0)$ exists, then for each $s \in [a,b]$ there is a $\delta(t_0,s,\varepsilon)>0$ such that
$$
\left|\frac{\partial\phi}{\partial t}(s,t_0)-\frac{\phi(s,t)-\phi(s,t_0)}{t-t_0}\right|< \frac{\varepsilon}{b-a} \quad \forall (s,t) \in [a,b]\times[c,d],\ |t_0-t|<\delta(t_0,s,\varepsilon).
$$
Since
$$
[a,b]\times[c,d] \subset \bigcup_{(s,t) \in [a,b]\times[c,d]}(s-\varepsilon,s+\varepsilon)\times(t-\delta(t,s,\varepsilon),t+\delta(t,s,\varepsilon))
$$
and $[a,b]\times[c,d]$ is compact, therefore there exist
$$
(s_1,t_1),\ldots, (s_n,t_n) \in [a,b]\times[c,d]
$$
such that
$$
[a,b]\times[c,d] \subset \bigcup_{i=1}^n(s_i-\varepsilon,s_i+\varepsilon)\times(t_i-\delta(t_i,s_i,\varepsilon),t_i+\delta(t_i,s_i,\varepsilon)).
$$
Choosing
$$
\delta_0(\varepsilon)=\min_{1 \le i \le n}\delta(t_i,s_i,\varepsilon),
$$
we have for every $t \in [c,d]$ with $|t_0-t|< \delta_0(\varepsilon)$
\begin{eqnarray}
\left|\int_a^b\frac{\partial\phi}{\partial t}(s,t_0)ds-\frac{h(t)-h(t_0)}{t-t_0}\right|&=&\left|\int_a^b\left[\frac{\partial\phi}{\partial t}(s,t_0)-\frac{\phi(s,t)-\phi(s,t_0)}{t-t_0}\right]ds\right|\\
&\le&\int_a^b\left|\frac{\partial\phi}{\partial t}(s,t_0)-\frac{\phi(s,t)-\phi(s,t_0)}{t-t_0}\right|ds\\
&\le&\int_a^b\frac{\varepsilon}{b-a}ds=\varepsilon,
\end{eqnarray}
i.e. $h$ is differentiable at $t_0 \in [c,d]$ and
$$
h'(t_0)=\int_a^b\frac{\partial\phi}{\partial t}(s,t_0)ds.
$$