$$
I := \int_{\pi/4}^{\pi/2} \log \log \tan x \,dx
$$
is, after substitution $x \mapsto \arctan e^{x}$, equal to
$$
\frac{1}{2} \int_{0}^{\infty} \frac{\log x}{\cosh x} \,dx.
$$
Further, this can be expressed as
$$
\frac{\pi}{2} \int_{0}^{\infty} \frac{\log \pi x}{\cosh \pi x} \,dx = \frac{\pi}{2} \log \sqrt{\pi} \int_{-\infty}^{\infty} \frac{dx}{\cosh \pi x} + \frac{\pi}{8} \int_{-\infty}^{\infty} \frac{\log x^{2}}{\cosh \pi x} \,dx.
$$
Here, $\int_{-\infty}^{\infty} \frac{dx}{\cosh \pi x} = 1$, and according to the formula
$$
\int_{-\infty}^{\infty} \frac{\log(\alpha^{2}+x^{2})}{\cosh \pi x} \,dx = 4 \log \left(\sqrt{2} \; \frac{\Gamma\left(\frac{3}{4} + \frac{\alpha}{2}\right)}{\Gamma\left(\frac{1}{4} + \frac{\alpha}{2}\right)}\right)
$$
for $\alpha \geq 0$, it follows that
$$
\frac{\pi}{8} \int_{-\infty}^{\infty} \frac{\log x^{2}}{\cosh \pi x} \,dx = \frac{\pi}{2} \log \left(\sqrt{2} \, \frac{\Gamma\left(\frac{3}{4}\right)}{\Gamma\left(\frac{1}{4}\right)}\right).
$$
Therefore,
$$
I = \frac{\pi}{2} \log \left(\sqrt{2\pi} \; \frac{\Gamma\left(\frac{3}{4}\right)}{\Gamma\left(\frac{1}{4}\right)}\right).
$$