You are close. By my calculation (checked on a $2\,x\,2$ example)
$$\frac{\partial }{{\partial \underline {\overline {\bf{A}} } }}\left( {{{\underline {\overline {\bf{A}} } }^T}\underline {\overline {\bf{A}} } } \right) = \left( {{{\underline {\overline {\bf{I}} } }_{\left[ n \right]}} \otimes {{\underline {\overline {\bf{A}} } }^T}} \right) + \left( {{{\underline {\overline {\bf{A}} } }^T} \otimes {{\underline {\overline {\bf{I}} } }_{\left[ n \right]}}} \right){\underline {\overline {\bf{K}} } _{\left[ {m,n} \right]}}$$
Derivation:
$$\frac{\partial }{{\partial \underline {\overline {\bf{A}} } }}\left( {{{\underline {\overline {\bf{A}} } }^T}\underline {\overline {\bf{A}} } } \right) = {\left. {\frac{\partial }{{\partial \underline {\overline {\bf{A}} } }}\left( {{{\underline {\overline {\bf{A}} } }^T}\underline {\overline {\bf{A}} } } \right)} \right|_{{{\underline {\overline {\bf{A}} } }^T}{\rm{ constant}}}} + {\left. {\frac{\partial }{{\partial \underline {\overline {\bf{A}} } }}\left( {{{\underline {\overline {\bf{A}} } }^T}\underline {\overline {\bf{A}} } } \right)} \right|_{\underline {\overline {\bf{A}} } {\rm{ constant}}}}$$
For the first term
$${\underline {\overline {\bf{A}} } ^T}\underline {\overline {\bf{A}} } = {\underline {\overline {\bf{A}} } ^T}\underline {\overline {\bf{A}} } \,{\underline {\overline {\bf{I}} } _{\left[ n \right]}} = \left( {{{\underline {\overline {\bf{I}} } }_{\left[ n \right]}} \otimes {{\underline {\overline {\bf{A}} } }^T}} \right){\rm{vec}}\left( {\underline {\overline {\bf{A}} } } \right)$$
so that
$${\left. {\frac{\partial }{{\partial \underline {\overline {\bf{A}} } }}\left( {{{\underline {\overline {\bf{A}} } }^T}\underline {\overline {\bf{A}} } } \right)} \right|_{{{\underline {\overline {\bf{A}} } }^T}{\rm{ constant}}}} = \left( {{{\underline {\overline {\bf{I}} } }_{\left[ n \right]}} \otimes {{\underline {\overline {\bf{A}} } }^T}} \right)$$
For the second term
$${\underline {\overline {\bf{A}} } ^T}\underline {\overline {\bf{A}} } = {\underline {\overline {\bf{I}} } _{\left[ n \right]}}{\underline {\overline {\bf{A}} } ^T}\underline {\overline {\bf{A}} } = \left( {{{\underline {\overline {\bf{A}} } }^T} \otimes {{\underline {\overline {\bf{I}} } }_{\left[ n \right]}}} \right){\rm{vec}}\left( {{{\underline {\overline {\bf{A}} } }^T}} \right) = \left( {{{\underline {\overline {\bf{A}} } }^T} \otimes {{\underline {\overline {\bf{I}} } }_{\left[ n \right]}}} \right){\underline {\overline {\bf{K}} } _{\left[ {m,n} \right]}}{\rm{vec}}\left( {\underline {\overline {\bf{A}} } } \right)$$
so that
$${\left. {\frac{\partial }{{\partial \underline {\overline {\bf{A}} } }}\left( {{{\underline {\overline {\bf{A}} } }^T}\underline {\overline {\bf{A}} } } \right)} \right|_{\underline {\overline {\bf{A}} } {\rm{ constant}}}} = \left( {{{\underline {\overline {\bf{A}} } }^T} \otimes {{\underline {\overline {\bf{I}} } }_{\left[ n \right]}}} \right){\underline {\overline {\bf{K}} } _{\left[ {m,n} \right]}}$$
I found it a challenge to stitch together all the different results required to do this type of calculation proficiently (which I needed to compute the Jacobian determinant of SVD transformations). One very useful reference that dealt with elimination and commutation matrices is:
Magnus, J., and Neudecker, H., “The Elimination Matrix: Some Lemmas and Applications,” SIAM J. on Algebraic. and Discrete Meth., V. 1, Issue 4, pp 422-449, Dec. 1980.
However, this doesn’t cover anything to do with the calculus side of things. I ended up compiling my own list of useful results, which (for the real case) can be found here in Section 3. The fact that it is Rev 8 gives you a sense of how easy it is to mess things up.