$$ P^T H P = D $$
$$\left(
\begin{array}{rrrrr}
1 & 0 & 0 & 0 & 0 \\
- \frac{ 26 }{ 27 } & 1 & 0 & 0 & 0 \\
\frac{ 1344 }{ 583 } & - \frac{ 882 }{ 583 } & 1 & 0 & 0 \\
\frac{ 146 }{ 21 } & - \frac{ 37 }{ 7 } & \frac{ 110 }{ 63 } & 1 & 0 \\
\frac{ 89 }{ 81 } & - \frac{ 22 }{ 27 } & - \frac{ 154 }{ 243 } & 0 & 1 \\
\end{array}
\right)
\left(
\begin{array}{rrrrr}
6237 & 6006 & - 5292 & - 2376 & - 5313 \\
6006 & 6237 & - 4410 & - 1089 & - 4312 \\
- 5292 & - 4410 & 6237 & 2592 & 6174 \\
- 2376 & - 1089 & 2592 & 6237 & 3366 \\
- 5313 & - 4312 & 6174 & 3366 & 6237 \\
\end{array}
\right)
\left(
\begin{array}{rrrrr}
1 & - \frac{ 26 }{ 27 } & \frac{ 1344 }{ 583 } & \frac{ 146 }{ 21 } & \frac{ 89 }{ 81 } \\
0 & 1 & - \frac{ 882 }{ 583 } & - \frac{ 37 }{ 7 } & - \frac{ 22 }{ 27 } \\
0 & 0 & 1 & \frac{ 110 }{ 63 } & - \frac{ 154 }{ 243 } \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
\end{array}
\right)
= \left(
\begin{array}{rrrrr}
6237 & 0 & 0 & 0 & 0 \\
0 & \frac{ 4081 }{ 9 } & 0 & 0 & 0 \\
0 & 0 & \frac{ 413343 }{ 583 } & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
\end{array}
\right)
$$
$$ Q^T D Q = H $$
$$\left(
\begin{array}{rrrrr}
1 & 0 & 0 & 0 & 0 \\
\frac{ 26 }{ 27 } & 1 & 0 & 0 & 0 \\
- \frac{ 28 }{ 33 } & \frac{ 882 }{ 583 } & 1 & 0 & 0 \\
- \frac{ 8 }{ 21 } & \frac{ 981 }{ 371 } & - \frac{ 110 }{ 63 } & 1 & 0 \\
- \frac{ 23 }{ 27 } & \frac{ 94 }{ 53 } & \frac{ 154 }{ 243 } & 0 & 1 \\
\end{array}
\right)
\left(
\begin{array}{rrrrr}
6237 & 0 & 0 & 0 & 0 \\
0 & \frac{ 4081 }{ 9 } & 0 & 0 & 0 \\
0 & 0 & \frac{ 413343 }{ 583 } & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
\end{array}
\right)
\left(
\begin{array}{rrrrr}
1 & \frac{ 26 }{ 27 } & - \frac{ 28 }{ 33 } & - \frac{ 8 }{ 21 } & - \frac{ 23 }{ 27 } \\
0 & 1 & \frac{ 882 }{ 583 } & \frac{ 981 }{ 371 } & \frac{ 94 }{ 53 } \\
0 & 0 & 1 & - \frac{ 110 }{ 63 } & \frac{ 154 }{ 243 } \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
\end{array}
\right)
= \left(
\begin{array}{rrrrr}
6237 & 6006 & - 5292 & - 2376 & - 5313 \\
6006 & 6237 & - 4410 & - 1089 & - 4312 \\
- 5292 & - 4410 & 6237 & 2592 & 6174 \\
- 2376 & - 1089 & 2592 & 6237 & 3366 \\
- 5313 & - 4312 & 6174 & 3366 & 6237 \\
\end{array}
\right)
$$
Algorithm discussed at http://math.stackexchange.com/questions/1388421/reference-for-linear-algebra-books-that-teach-reverse-hermite-method-for-symmetr
https://en.wikipedia.org/wiki/Sylvester%27s_law_of_inertia
$$ H = \left(
\begin{array}{rrrrr}
6237 & 6006 & - 5292 & - 2376 & - 5313 \\
6006 & 6237 & - 4410 & - 1089 & - 4312 \\
- 5292 & - 4410 & 6237 & 2592 & 6174 \\
- 2376 & - 1089 & 2592 & 6237 & 3366 \\
- 5313 & - 4312 & 6174 & 3366 & 6237 \\
\end{array}
\right)
$$
$$ D_0 = H $$
$$ E_j^T D_{j-1} E_j = D_j $$
$$ P_{j-1} E_j = P_j $$
$$ E_j^{-1} Q_{j-1} = Q_j $$
$$ P_j Q_j = Q_j P_j = I $$
$$ P_j^T H P_j = D_j $$
$$ Q_j^T D_j Q_j = H $$
$$ H = \left(
\begin{array}{rrrrr}
6237 & 6006 & - 5292 & - 2376 & - 5313 \\
6006 & 6237 & - 4410 & - 1089 & - 4312 \\
- 5292 & - 4410 & 6237 & 2592 & 6174 \\
- 2376 & - 1089 & 2592 & 6237 & 3366 \\
- 5313 & - 4312 & 6174 & 3366 & 6237 \\
\end{array}
\right)
$$
==============================================
$$ E_{1} = \left(
\begin{array}{rrrrr}
1 & - \frac{ 26 }{ 27 } & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
\end{array}
\right)
$$
$$ P_{1} = \left(
\begin{array}{rrrrr}
1 & - \frac{ 26 }{ 27 } & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; Q_{1} = \left(
\begin{array}{rrrrr}
1 & \frac{ 26 }{ 27 } & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; D_{1} = \left(
\begin{array}{rrrrr}
6237 & 0 & - 5292 & - 2376 & - 5313 \\
0 & \frac{ 4081 }{ 9 } & 686 & 1199 & \frac{ 7238 }{ 9 } \\
- 5292 & 686 & 6237 & 2592 & 6174 \\
- 2376 & 1199 & 2592 & 6237 & 3366 \\
- 5313 & \frac{ 7238 }{ 9 } & 6174 & 3366 & 6237 \\
\end{array}
\right)
$$
==============================================
$$ E_{2} = \left(
\begin{array}{rrrrr}
1 & 0 & \frac{ 28 }{ 33 } & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
\end{array}
\right)
$$
$$ P_{2} = \left(
\begin{array}{rrrrr}
1 & - \frac{ 26 }{ 27 } & \frac{ 28 }{ 33 } & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; Q_{2} = \left(
\begin{array}{rrrrr}
1 & \frac{ 26 }{ 27 } & - \frac{ 28 }{ 33 } & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; D_{2} = \left(
\begin{array}{rrrrr}
6237 & 0 & 0 & - 2376 & - 5313 \\
0 & \frac{ 4081 }{ 9 } & 686 & 1199 & \frac{ 7238 }{ 9 } \\
0 & 686 & \frac{ 19215 }{ 11 } & 576 & 1666 \\
- 2376 & 1199 & 576 & 6237 & 3366 \\
- 5313 & \frac{ 7238 }{ 9 } & 1666 & 3366 & 6237 \\
\end{array}
\right)
$$
==============================================
$$ E_{3} = \left(
\begin{array}{rrrrr}
1 & 0 & 0 & \frac{ 8 }{ 21 } & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
\end{array}
\right)
$$
$$ P_{3} = \left(
\begin{array}{rrrrr}
1 & - \frac{ 26 }{ 27 } & \frac{ 28 }{ 33 } & \frac{ 8 }{ 21 } & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; Q_{3} = \left(
\begin{array}{rrrrr}
1 & \frac{ 26 }{ 27 } & - \frac{ 28 }{ 33 } & - \frac{ 8 }{ 21 } & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; D_{3} = \left(
\begin{array}{rrrrr}
6237 & 0 & 0 & 0 & - 5313 \\
0 & \frac{ 4081 }{ 9 } & 686 & 1199 & \frac{ 7238 }{ 9 } \\
0 & 686 & \frac{ 19215 }{ 11 } & 576 & 1666 \\
0 & 1199 & 576 & \frac{ 37323 }{ 7 } & 1342 \\
- 5313 & \frac{ 7238 }{ 9 } & 1666 & 1342 & 6237 \\
\end{array}
\right)
$$
==============================================
$$ E_{4} = \left(
\begin{array}{rrrrr}
1 & 0 & 0 & 0 & \frac{ 23 }{ 27 } \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
\end{array}
\right)
$$
$$ P_{4} = \left(
\begin{array}{rrrrr}
1 & - \frac{ 26 }{ 27 } & \frac{ 28 }{ 33 } & \frac{ 8 }{ 21 } & \frac{ 23 }{ 27 } \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; Q_{4} = \left(
\begin{array}{rrrrr}
1 & \frac{ 26 }{ 27 } & - \frac{ 28 }{ 33 } & - \frac{ 8 }{ 21 } & - \frac{ 23 }{ 27 } \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; D_{4} = \left(
\begin{array}{rrrrr}
6237 & 0 & 0 & 0 & 0 \\
0 & \frac{ 4081 }{ 9 } & 686 & 1199 & \frac{ 7238 }{ 9 } \\
0 & 686 & \frac{ 19215 }{ 11 } & 576 & 1666 \\
0 & 1199 & 576 & \frac{ 37323 }{ 7 } & 1342 \\
0 & \frac{ 7238 }{ 9 } & 1666 & 1342 & \frac{ 15400 }{ 9 } \\
\end{array}
\right)
$$
==============================================
$$ E_{5} = \left(
\begin{array}{rrrrr}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & - \frac{ 882 }{ 583 } & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
\end{array}
\right)
$$
$$ P_{5} = \left(
\begin{array}{rrrrr}
1 & - \frac{ 26 }{ 27 } & \frac{ 1344 }{ 583 } & \frac{ 8 }{ 21 } & \frac{ 23 }{ 27 } \\
0 & 1 & - \frac{ 882 }{ 583 } & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; Q_{5} = \left(
\begin{array}{rrrrr}
1 & \frac{ 26 }{ 27 } & - \frac{ 28 }{ 33 } & - \frac{ 8 }{ 21 } & - \frac{ 23 }{ 27 } \\
0 & 1 & \frac{ 882 }{ 583 } & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; D_{5} = \left(
\begin{array}{rrrrr}
6237 & 0 & 0 & 0 & 0 \\
0 & \frac{ 4081 }{ 9 } & 0 & 1199 & \frac{ 7238 }{ 9 } \\
0 & 0 & \frac{ 413343 }{ 583 } & - \frac{ 65610 }{ 53 } & \frac{ 23814 }{ 53 } \\
0 & 1199 & - \frac{ 65610 }{ 53 } & \frac{ 37323 }{ 7 } & 1342 \\
0 & \frac{ 7238 }{ 9 } & \frac{ 23814 }{ 53 } & 1342 & \frac{ 15400 }{ 9 } \\
\end{array}
\right)
$$
==============================================
$$ E_{6} = \left(
\begin{array}{rrrrr}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & - \frac{ 981 }{ 371 } & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
\end{array}
\right)
$$
$$ P_{6} = \left(
\begin{array}{rrrrr}
1 & - \frac{ 26 }{ 27 } & \frac{ 1344 }{ 583 } & \frac{ 1086 }{ 371 } & \frac{ 23 }{ 27 } \\
0 & 1 & - \frac{ 882 }{ 583 } & - \frac{ 981 }{ 371 } & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; Q_{6} = \left(
\begin{array}{rrrrr}
1 & \frac{ 26 }{ 27 } & - \frac{ 28 }{ 33 } & - \frac{ 8 }{ 21 } & - \frac{ 23 }{ 27 } \\
0 & 1 & \frac{ 882 }{ 583 } & \frac{ 981 }{ 371 } & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; D_{6} = \left(
\begin{array}{rrrrr}
6237 & 0 & 0 & 0 & 0 \\
0 & \frac{ 4081 }{ 9 } & 0 & 0 & \frac{ 7238 }{ 9 } \\
0 & 0 & \frac{ 413343 }{ 583 } & - \frac{ 65610 }{ 53 } & \frac{ 23814 }{ 53 } \\
0 & 0 & - \frac{ 65610 }{ 53 } & \frac{ 801900 }{ 371 } & - \frac{ 41580 }{ 53 } \\
0 & \frac{ 7238 }{ 9 } & \frac{ 23814 }{ 53 } & - \frac{ 41580 }{ 53 } & \frac{ 15400 }{ 9 } \\
\end{array}
\right)
$$
==============================================
$$ E_{7} = \left(
\begin{array}{rrrrr}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & - \frac{ 94 }{ 53 } \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
\end{array}
\right)
$$
$$ P_{7} = \left(
\begin{array}{rrrrr}
1 & - \frac{ 26 }{ 27 } & \frac{ 1344 }{ 583 } & \frac{ 1086 }{ 371 } & \frac{ 407 }{ 159 } \\
0 & 1 & - \frac{ 882 }{ 583 } & - \frac{ 981 }{ 371 } & - \frac{ 94 }{ 53 } \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; Q_{7} = \left(
\begin{array}{rrrrr}
1 & \frac{ 26 }{ 27 } & - \frac{ 28 }{ 33 } & - \frac{ 8 }{ 21 } & - \frac{ 23 }{ 27 } \\
0 & 1 & \frac{ 882 }{ 583 } & \frac{ 981 }{ 371 } & \frac{ 94 }{ 53 } \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; D_{7} = \left(
\begin{array}{rrrrr}
6237 & 0 & 0 & 0 & 0 \\
0 & \frac{ 4081 }{ 9 } & 0 & 0 & 0 \\
0 & 0 & \frac{ 413343 }{ 583 } & - \frac{ 65610 }{ 53 } & \frac{ 23814 }{ 53 } \\
0 & 0 & - \frac{ 65610 }{ 53 } & \frac{ 801900 }{ 371 } & - \frac{ 41580 }{ 53 } \\
0 & 0 & \frac{ 23814 }{ 53 } & - \frac{ 41580 }{ 53 } & \frac{ 15092 }{ 53 } \\
\end{array}
\right)
$$
==============================================
$$ E_{8} = \left(
\begin{array}{rrrrr}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & \frac{ 110 }{ 63 } & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
\end{array}
\right)
$$
$$ P_{8} = \left(
\begin{array}{rrrrr}
1 & - \frac{ 26 }{ 27 } & \frac{ 1344 }{ 583 } & \frac{ 146 }{ 21 } & \frac{ 407 }{ 159 } \\
0 & 1 & - \frac{ 882 }{ 583 } & - \frac{ 37 }{ 7 } & - \frac{ 94 }{ 53 } \\
0 & 0 & 1 & \frac{ 110 }{ 63 } & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; Q_{8} = \left(
\begin{array}{rrrrr}
1 & \frac{ 26 }{ 27 } & - \frac{ 28 }{ 33 } & - \frac{ 8 }{ 21 } & - \frac{ 23 }{ 27 } \\
0 & 1 & \frac{ 882 }{ 583 } & \frac{ 981 }{ 371 } & \frac{ 94 }{ 53 } \\
0 & 0 & 1 & - \frac{ 110 }{ 63 } & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; D_{8} = \left(
\begin{array}{rrrrr}
6237 & 0 & 0 & 0 & 0 \\
0 & \frac{ 4081 }{ 9 } & 0 & 0 & 0 \\
0 & 0 & \frac{ 413343 }{ 583 } & 0 & \frac{ 23814 }{ 53 } \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{ 23814 }{ 53 } & 0 & \frac{ 15092 }{ 53 } \\
\end{array}
\right)
$$
==============================================
$$ E_{9} = \left(
\begin{array}{rrrrr}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & - \frac{ 154 }{ 243 } \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
\end{array}
\right)
$$
$$ P_{9} = \left(
\begin{array}{rrrrr}
1 & - \frac{ 26 }{ 27 } & \frac{ 1344 }{ 583 } & \frac{ 146 }{ 21 } & \frac{ 89 }{ 81 } \\
0 & 1 & - \frac{ 882 }{ 583 } & - \frac{ 37 }{ 7 } & - \frac{ 22 }{ 27 } \\
0 & 0 & 1 & \frac{ 110 }{ 63 } & - \frac{ 154 }{ 243 } \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; Q_{9} = \left(
\begin{array}{rrrrr}
1 & \frac{ 26 }{ 27 } & - \frac{ 28 }{ 33 } & - \frac{ 8 }{ 21 } & - \frac{ 23 }{ 27 } \\
0 & 1 & \frac{ 882 }{ 583 } & \frac{ 981 }{ 371 } & \frac{ 94 }{ 53 } \\
0 & 0 & 1 & - \frac{ 110 }{ 63 } & \frac{ 154 }{ 243 } \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; D_{9} = \left(
\begin{array}{rrrrr}
6237 & 0 & 0 & 0 & 0 \\
0 & \frac{ 4081 }{ 9 } & 0 & 0 & 0 \\
0 & 0 & \frac{ 413343 }{ 583 } & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
\end{array}
\right)
$$
==============================================
$$ P^T H P = D $$
$$\left(
\begin{array}{rrrrr}
1 & 0 & 0 & 0 & 0 \\
- \frac{ 26 }{ 27 } & 1 & 0 & 0 & 0 \\
\frac{ 1344 }{ 583 } & - \frac{ 882 }{ 583 } & 1 & 0 & 0 \\
\frac{ 146 }{ 21 } & - \frac{ 37 }{ 7 } & \frac{ 110 }{ 63 } & 1 & 0 \\
\frac{ 89 }{ 81 } & - \frac{ 22 }{ 27 } & - \frac{ 154 }{ 243 } & 0 & 1 \\
\end{array}
\right)
\left(
\begin{array}{rrrrr}
6237 & 6006 & - 5292 & - 2376 & - 5313 \\
6006 & 6237 & - 4410 & - 1089 & - 4312 \\
- 5292 & - 4410 & 6237 & 2592 & 6174 \\
- 2376 & - 1089 & 2592 & 6237 & 3366 \\
- 5313 & - 4312 & 6174 & 3366 & 6237 \\
\end{array}
\right)
\left(
\begin{array}{rrrrr}
1 & - \frac{ 26 }{ 27 } & \frac{ 1344 }{ 583 } & \frac{ 146 }{ 21 } & \frac{ 89 }{ 81 } \\
0 & 1 & - \frac{ 882 }{ 583 } & - \frac{ 37 }{ 7 } & - \frac{ 22 }{ 27 } \\
0 & 0 & 1 & \frac{ 110 }{ 63 } & - \frac{ 154 }{ 243 } \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
\end{array}
\right)
= \left(
\begin{array}{rrrrr}
6237 & 0 & 0 & 0 & 0 \\
0 & \frac{ 4081 }{ 9 } & 0 & 0 & 0 \\
0 & 0 & \frac{ 413343 }{ 583 } & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
\end{array}
\right)
$$
$$ Q^T D Q = H $$
$$\left(
\begin{array}{rrrrr}
1 & 0 & 0 & 0 & 0 \\
\frac{ 26 }{ 27 } & 1 & 0 & 0 & 0 \\
- \frac{ 28 }{ 33 } & \frac{ 882 }{ 583 } & 1 & 0 & 0 \\
- \frac{ 8 }{ 21 } & \frac{ 981 }{ 371 } & - \frac{ 110 }{ 63 } & 1 & 0 \\
- \frac{ 23 }{ 27 } & \frac{ 94 }{ 53 } & \frac{ 154 }{ 243 } & 0 & 1 \\
\end{array}
\right)
\left(
\begin{array}{rrrrr}
6237 & 0 & 0 & 0 & 0 \\
0 & \frac{ 4081 }{ 9 } & 0 & 0 & 0 \\
0 & 0 & \frac{ 413343 }{ 583 } & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
\end{array}
\right)
\left(
\begin{array}{rrrrr}
1 & \frac{ 26 }{ 27 } & - \frac{ 28 }{ 33 } & - \frac{ 8 }{ 21 } & - \frac{ 23 }{ 27 } \\
0 & 1 & \frac{ 882 }{ 583 } & \frac{ 981 }{ 371 } & \frac{ 94 }{ 53 } \\
0 & 0 & 1 & - \frac{ 110 }{ 63 } & \frac{ 154 }{ 243 } \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
\end{array}
\right)
= \left(
\begin{array}{rrrrr}
6237 & 6006 & - 5292 & - 2376 & - 5313 \\
6006 & 6237 & - 4410 & - 1089 & - 4312 \\
- 5292 & - 4410 & 6237 & 2592 & 6174 \\
- 2376 & - 1089 & 2592 & 6237 & 3366 \\
- 5313 & - 4312 & 6174 & 3366 & 6237 \\
\end{array}
\right)
$$
......................