Analyze the convergence of $$\sum\frac{1}{n(\log(n))^c}.$$
I know that it diverges for $c\leq1$ by using comparision test and integral test for convergence through the $$\int_{2}^{\infty}\frac{1}{x\log x}dx= \log(\log(\infty))-\log(\log2)$$
I also have a gut feeling that it converges for $c>1$ but not able to prove so. Please try explaining through less exotic methods by not resorting to weird convergence test theorem. Thanks!