Premise
Let's first see which are the series corresponding to the basic manipulations involved in the algebraic demonstration of the identity in question.
1) Convolution
$$
\eqalign{
& \left( {1 + yx} \right)^{\,r} \left( {1 + x} \right)^{\,s} = \sum\limits_{0\, \le \,k} {\sum\limits_{0\, \le \,j} {
\left( \matrix{ r \cr j \cr} \right)\,\left( \matrix{ s \cr k \cr} \right)x^{\,j} y^{\,j} \;x^{\,k} } } = \cr
& = \sum\limits_{0\, \le \,k} {\sum\limits_{0\, \le \,j} {
\left( \matrix{ r \cr j \cr} \right)\,\left( \matrix{ s \cr k + j - j \cr} \right)x^{\,j + k} y^{\,j} } } = \cr
& = \sum\limits_{0\, \le \,l} {\left( {\sum\limits_{0\, \le \,j} {
\left( \matrix{ r \cr j \cr} \right)\,\left( \matrix{ s \cr l - j \cr} \right)y^{\,j} } } \right)x^{\,l} }
\cr}
$$
in which, of course, one can put $x$ and/or $y$ to $1$, or other value.
2) Trinomial Revision
Trinomial Revision does not have a single z-Transform for the repeated index, but the double one is quite simple
$$
\eqalign{
& \left( {1 + y\left( {1 + x} \right)} \right)^{\,r} = \cr
& = \sum\limits_{0\, \le \,k} {\left( \matrix{
r \cr
k \cr} \right)y^{\,k} \left( {1 + x} \right)^{\,k} } = \sum\limits_{0\, \le \,k} {\sum\limits_{0\, \le \,m\,\left( { \le \,k} \right)} {\left( \matrix{
r \cr
k \cr} \right)\left( \matrix{
k \cr
m \cr} \right)y^{\,k} x^{\,m} } } = \cr
& = \left( {1 + y + yx} \right)^{\,r} = \cr
& = \sum\limits_{0\, \le \,m} {\left( \matrix{
r \cr
m \cr} \right)\left( {yx} \right)^{\,m} \left( {1 + y} \right)^{\,r - m} } = \sum\limits_{0\, \le \,j} {\sum\limits_{0\, \le \,m} {\left( \matrix{
r \cr
m \cr} \right)\left( \matrix{
r - m \cr
j \cr} \right)y^{\,m} y^{\,j} x^{\,m} } } = \cr
& = \sum\limits_{m\, \le \,m + j} {\sum\limits_{0\, \le \,m} {\left( \matrix{
r \cr
m \cr} \right)\left( \matrix{
r - m \cr
\left( {m + j} \right) - m \cr} \right)y^{\,\left( {m + j} \right)} x^{\,m} } } = \sum\limits_{0\, \le \,\left( {m\, \le } \right)\,k} {\sum\limits_{0\, \le \,m} {\left( \matrix{
r \cr
m \cr} \right)\left( \matrix{
r - m \cr
k - m \cr} \right)y^{\,k} x^{\,m} } } \cr}
$$
Your Request
Considering the requirement of your post, if we take the expansion already given
in the related post, which is equivalent to that given above by robjohn,
and attempt to go backwards, we will realize that we are going into a complicated formal series involving
some five or six variables, which does not seem to be much of interest.
That's mainly due to the Trinomial Revision asking for a double sum.
The first step in such a backward route was already given in the answer to the cited related post.