The development of the Saalschütz's identity that I know proceeds along the following path.
Start with the known identity about the sum of the product of three binomials:
$$ \bbox[lightyellow] {
\begin{gathered}
F(m,n,r,s)\quad \left| {\;0 \leqslant \text{integers}\,m,n} \right.\quad = \hfill \\
= \sum\limits_{\left( {0\, \leqslant } \right)\;k\,\left( { \leqslant \,n} \right)} {\left( \begin{gathered}
m - r + s \\ k \\
\end{gathered} \right)\left( \begin{gathered}
n + r - s \\ n - k \\
\end{gathered} \right)\left( \begin{gathered}
r + k \\ m + n \\
\end{gathered} \right)} = \hfill \\
= \sum\limits_{\begin{subarray}{l}
\left( {0\, \leqslant } \right)\;k\,\left( { \leqslant \,n} \right) \\
\left( {0\, \leqslant } \right)\;j\,\left( { \leqslant \,m + n} \right)
\end{subarray}} {\left( \begin{gathered}
m - r + s \\ k \\
\end{gathered} \right)\left( \begin{gathered}
n + r - s \\ n - k \\
\end{gathered} \right)\left( \begin{gathered}
r \\ m + n - j \\
\end{gathered} \right)\left( \begin{gathered}
k \\ j \\
\end{gathered} \right)} = \hfill \\
= \sum\limits_{\begin{subarray}{l}
\left( {0\, \leqslant } \right)\;k\,\left( { \leqslant \,n} \right) \\
\left( {0\, \leqslant } \right)\;j\,\left( { \leqslant \,m + n} \right)
\end{subarray}} {\left( \begin{gathered}
m - r + s \\ j \\
\end{gathered} \right)\left( \begin{gathered}
m - r + s - j \\ k - j \\
\end{gathered} \right)\left( \begin{gathered}
n + r - s \\ n - k \\
\end{gathered} \right)\left( \begin{gathered}
r \\ m + n - j \\
\end{gathered} \right)} = \hfill \\
= \sum\limits_{\left( {0\, \leqslant } \right)\;j\,\left( { \leqslant \,m + n} \right)} {\left( \begin{gathered}
m - r + s \\ j \\
\end{gathered} \right)\left( \begin{gathered}
n + m - j \\ n - j \\
\end{gathered} \right)\left( \begin{gathered}
r \\ m + n - j \\
\end{gathered} \right)} = \hfill \\
= \sum\limits_{\left( {0\, \leqslant } \right)\;j\,\left( { \leqslant \,m + n} \right)} {\left( \begin{gathered}
m - r + s \\ j \\
\end{gathered} \right)\left( \begin{gathered}
n + m - j \\ m \\
\end{gathered} \right)\left( \begin{gathered}
r \\ m + n - j \\
\end{gathered} \right)} = \hfill \\
= \sum\limits_{\left( {0\, \leqslant } \right)\;j\,\left( { \leqslant \,m + n} \right)} {\left( \begin{gathered}
m - r + s \\ j \\
\end{gathered} \right)\left( \begin{gathered}
r \\ m \\
\end{gathered} \right)\left( \begin{gathered}
r - m \\ n - j \\
\end{gathered} \right)} = \hfill \\
= \left( \begin{gathered}
r \\ m \\
\end{gathered} \right)\left( \begin{gathered}
s \\ n \\
\end{gathered} \right) \hfill \\
\end{gathered} \tag{1}
} $$
where the steps are:
- inverse convolution on last b.;
- trinomial revision on 1st and 4th b.;
- convolution in $k$ on 2nd and 3rd b.;
- symmetry on 2nd b.;
- trinomial revision on 2nd and 3rd b.;
- convolution in $j$ on 1st and 3rd b.
Then consider that the addenda in the sum are
$$
\begin{gathered}
t_{\,k} = \left( \begin{gathered}
m - r + s \\
k \\
\end{gathered} \right)\left( \begin{gathered}
n + r - s \\
n - k \\
\end{gathered} \right)\left( \begin{gathered}
r + k \\
m + n \\
\end{gathered} \right) = \hfill \\
= \frac{{\left( {m - r + s} \right)^{\,\underline {\,k\,} } }}
{{k!}}\frac{{\left( {n + r - s} \right)^{\,\underline {\,n - k\,} } }}
{{\left( {n - k} \right)!}}\frac{{\left( {r + k} \right)^{\,\underline {\,m + n\,} } }}
{{\left( {m + n} \right)!}} \hfill \\
\end{gathered}
$$
where $x^{\,\underline {\,k\,} }$ indicates the falling factorial.
The value of the initial term is
$$
t_{\,0} = \frac{{\left( {n + r - s} \right)^{\,\underline {\,n\,} } }}
{{n!}}\frac{{r^{\,\underline {\,m + n\,} } }}
{{\left( {m + n} \right)!}} = \left( \begin{gathered}
n + r - s \\
n \\
\end{gathered} \right)\left( \begin{gathered}
r \\
m + n \\
\end{gathered} \right)
$$
and the ratio of consecutive terms is a rational function in $k$
$$
\begin{gathered}
\frac{{t_{\,k + 1} }}
{{t_{\,k} }} = \frac{{\left( {m - r + s} \right)^{\,\underline {\,k + 1\,} } \left( {n + r - s} \right)^{\,\underline {\,n - k - 1\,} } \left( {r + k + 1} \right)^{\,\underline {\,m + n\,} } }}
{{\left( {m - r + s} \right)^{\,\underline {\,k\,} } \left( {n + r - s} \right)^{\,\underline {\,n - k\,} } \left( {r + k} \right)^{\,\underline {\,m + n\,} } }}\frac{{k!\left( {n - k} \right)!\left( {m + n} \right)!}}
{{\left( {k + 1} \right)!\left( {n - k - 1} \right)!\left( {m + n} \right)!}} = \hfill \\
= \frac{{\left( {m - r + s - k} \right)\left( {r + k + 1} \right)}}
{{\left( {r - s + 1 + k} \right)\left( {r + k - m - n + 1} \right)}}\frac{{\left( {n - k} \right)}}
{{\left( {k + 1} \right)}} = \hfill \\
= \frac{{\left( {r - m - s + k} \right)\left( {r + 1 + k} \right)\left( { - n + k} \right)}}
{{\left( {r - s + 1 + k} \right)\left( {r - m - n + 1 + k} \right)\left( {1 + k} \right)}} \hfill \\
\end{gathered}
$$
so that we can write
$$
\begin{gathered}
F(m,n,r,s) = t_0 \;{}_3F_2 \left[ {\left. \begin{gathered}
r + 1,\;r - m - s,\; - n \hfill \\
r - s + 1,\;r - m - n + 1\; \hfill \\
\end{gathered} \right|\;1} \right] = \hfill \\
= \left( \begin{gathered}
n + r - s \\
n \\
\end{gathered} \right)\left( \begin{gathered}
r \\
m + n \\
\end{gathered} \right)\;{}_3F_2 \left[ {\left. \begin{gathered}
r + 1,\;r - m - s,\; - n \hfill \\
r - s + 1,\;r - m - n + 1\; \hfill \\
\end{gathered} \right|\;1} \right] \hfill \\
\end{gathered}
$$
that is, changing $n$ to $q$ so not to get confused with your notation:
$$ \bbox[lightyellow] {
\begin{gathered}
{}_3F_2 \left[ {\left. \begin{gathered}
r + 1,\;r - m - s,\; - q \hfill \\
r - s + 1,\;r - m - q + 1\; \hfill \\
\end{gathered} \right|\;1} \right]\quad \left| {\;0 \leqslant \text{integers}\,m,q} \right.\quad = \hfill \\
= \left( \begin{gathered}
s \\
q \\
\end{gathered} \right)\left( \begin{gathered}
r \\
m \\
\end{gathered} \right)\;\mathop /\limits_{} \;\left( {\left( \begin{gathered}
q + r - s \\
q \\
\end{gathered} \right)\left( \begin{gathered}
r \\
m + q \\
\end{gathered} \right)} \right) = \hfill \\
= \frac{{\Gamma \left( {s + 1} \right)\Gamma \left( {r + 1} \right)\Gamma \left( {r - s + 1} \right)\Gamma \left( {q + 1} \right)\Gamma \left( {r - m - q + 1} \right)\Gamma \left( {m + q + 1} \right)}}
{{\Gamma \left( {s - q + 1} \right)\Gamma \left( {q + 1} \right)\Gamma \left( {r - m + 1} \right)\Gamma \left( {m + 1} \right)\Gamma \left( {q + r - s + 1} \right)\Gamma \left( {r + 1} \right)}} = \hfill \\
= \frac{{\Gamma \left( {s + 1} \right)\Gamma \left( {r - s + 1} \right)\Gamma \left( {r - m - q + 1} \right)\Gamma \left( {m + q + 1} \right)}}
{{\Gamma \left( {s - q + 1} \right)\Gamma \left( {r - s + q + 1} \right)\Gamma \left( {r - m + 1} \right)\Gamma \left( {m + 1} \right)}} = \hfill \\
= \frac{{s^{\,\underline {\,q\,} } \left( {r - s} \right)^{\,\underline {\, - \,q\,} } }}
{{\left( {r - m} \right)^{\,\underline {\,q\,} } m^{\,\underline {\, - q\,} } }} \hfill \\
\end{gathered} \tag{2}
} $$
which you can compare with your notation ( not forgetting the final $1/k!$ term) to get
$$
\left\{ \begin{gathered}
q = z \hfill \\
m = y + n \hfill \\
r = - x - 1 \hfill \\
s = - x - 1 - n \hfill \\
\end{gathered} \right.
$$
and finally
$$ \bbox[lightyellow] {
\begin{gathered}
{}_3F_2 \left[ {\left. \begin{gathered}
- x,\; - y,\; - z \hfill \\
n + 1,\; - x - y - z - n\; \hfill \\
\end{gathered} \right|\;1} \right]\quad \left| {\;0 \leqslant \text{integers}\,z,\left( {y + n} \right)} \right.\quad = \hfill \\
= \left( \begin{gathered}
- x - 1 - n \\
z \\
\end{gathered} \right)\left( \begin{gathered}
- x - 1 \\
y + n \\
\end{gathered} \right)\;\mathop /\limits_{} \;\left( {\left( \begin{gathered}
z + n \\
z \\
\end{gathered} \right)\left( \begin{gathered}
- x - 1 \\
y + n + z \\
\end{gathered} \right)} \right) = \hfill \\
= \frac{{\Gamma \left( { - x - n} \right)\Gamma \left( {n + 1} \right)\Gamma \left( { - x - y - n - z} \right)\Gamma \left( {y + n + z + 1} \right)}}
{{\Gamma \left( { - x - n - z} \right)\Gamma \left( {n + 1 + z} \right)\Gamma \left( { - x - y - n} \right)\Gamma \left( {y + n + 1} \right)}} = \hfill \\
= \frac{{\left( { - x - 1 - n} \right)^{\,\underline {\,z\,} } \,n^{\,\underline {\, - \,\,z\,} } }}
{{\left( { - x - 1 - n - y} \right)^{\,\underline {\,z\,} } \;\left( {n + y} \right)^{\,\underline {\, - \,z\,} } }} = \hfill \\
= \frac{{\Gamma \left( { - x - n} \right)\Gamma \left( {n + 1} \right)\Gamma \left( { - x - y - n - z} \right)\Gamma \left( {y + n + z + 1} \right)}}
{{\Gamma \left( { - x - y - n} \right)\Gamma \left( {y + n + 1} \right)\Gamma \left( { - x - n - z} \right)\Gamma \left( {n + 1 + z} \right)}} = \hfill \\
= \frac{{\left( { - x - 1 - n} \right)^{\,\underline {\,y\,} } \,n^{\,\underline {\, - \,\,y\,} } }}
{{\left( { - x - 1 - n - z} \right)^{\,\underline {\,y\,} } \;\left( {n + z} \right)^{\,\underline {\, - \,y\,} } }} \hfill \\
\end{gathered} \tag{3}
} $$
---- Addendum -------
Identity (1) is famous because it is one of the very few involving the product of more than two binomials,
and can be found in good collections of binomial identities .
A hint on how it could be related to binomial expansion can be got from considering
how it works for the last step, i.e.
$$
\begin{array}{l}
\left( {1 + x} \right)^{\,r} \left( {1 + y} \right)^{\,s} = \sum\limits_{\left( {0\, \le } \right)\,m} {\sum\limits_{\left( {0\, \le } \right)\,n} {\left( \begin{array}{c}
r \\
m \\
\end{array} \right)\left( \begin{array}{c}
s \\
n \\
\end{array} \right)x^{\,m} y^{\,n} } } = \\
= \sum\limits_{\left( {0\, \le } \right)\,m} {\;\sum\limits_{\left( {0\, \le } \right)\,n} {\sum\limits_{\left( {0\, \le } \right)\;j\,\left( { \le \,n} \right)} {\left( \begin{array}{c}
m - r + s \\
j \\
\end{array} \right)\left( \begin{array}{c}
r - m \\
n - j \\
\end{array} \right)z^{\,j} y^{\,n} \left( \begin{array}{c}
r \\
m \\
\end{array} \right)x^{\,m} } } } = \\
= \sum\limits_{\left( {0\, \le } \right)\,m} {\;\left( {1 + yz} \right)^{\,m - r + s} \left( {1 + y} \right)^{\,r - m} \left( \begin{array}{c}
r \\
m \\
\end{array} \right)x^{\,m} } = \\
= \left( {1 + yz} \right)^s \sum\limits_{\left( {0\, \le } \right)\,m} {\left( {\frac{{1 + y}}{{1 + yz}}} \right)^{\,r - m} \left( \begin{array}{c}
r \\
m \\
\end{array} \right)x^{\,m} } = \\
= \left( {1 + yz} \right)^s \left( {\frac{{1 + y}}{{1 + yz}} + x} \right)^r \\
\end{array}
$$
and then put $z=1$.
Note: the bounds put in brackets are to indicate that, from an algebraic point of view, they are superfluous because inherent to the binomial coeff. (which is null outside them); this is important to carry on in order to correctly apply the convolution.
A combinatorial proof can be found in this interesting paper