$E$ - elliptic curve on field $F_{2^4}$ with equetion $y^2 + y = x^3$.
I need to show, that for any $P \in E$, $3P = 0$.
Here is list of 16 field elements:
$0,1,t,t+1,$
$t^2,t^2+1,t^2+t,t^2+t+1,$
$t^3,t^3+1,t^3+t,t^3+t+1,t^3+t^2,t^3+t^2+1,t^3+t^2+t,t^3+t^2+t+1$
Let's define multiplication in the field as $a*b=c,$ where c is a remainder of division of $a*b$ by $t^4+t+1$
Now, we can clculate all elements of the field in cube:
$(0)^3 = 0$
$(1)^3 = 1$
$(t)^3 = t^3$
$(t+1)^3 = t^3+t^2+t+1$
$(t^2)^3 = t^3+t^2$
$(t^2+1)^3 = t^3+t$
$(t^2+t)^3 = 1$
$(t^2+t+1)^3 = 1$
$(t^3)^3 = t^3+t^2$
$(t^3+1)^3 = t^3+t^2+t+1$
$(t^3+t)^3 = t^3+t^2+t+1$
$(t^3+t+1)^3 = t^3+t^2$
$(t^3+t^2)^3 = t^3$
$(t^3+t^2+1)^3 = t^3+t$
$(t^3+t^2+t)^3 = t^3$
$(t^3+t^2+t+1)^3 = t^3+t^2$
We also can look at the curve equation like this: $y^2+y=y*(y+1)=x^3$.Thus, we can take any element from field, add $1$, multiply this two polynomials and check wheter it equals to any cube element or not.
$y=0 \Rightarrow 0*1=0$
$y=1 \Rightarrow 1*0=0$
$y=t \Rightarrow t*(t+1)=t^2+t$
$y=t+1 \Rightarrow (t+1)*t=t^2+t$
$y=t^2 \Rightarrow t^2*(t^2+1)=t^2+t+1$
$y=t^2+1 \Rightarrow (t^2+1)*t^2=t^2+t+1$
$y=t^2+t \Rightarrow (t^2+t)*(t^2+t+1)=1$
$y=t^2+t+1 \Rightarrow (t^2+t+1)*(t^2+t)=1$
$y=t^3 \Rightarrow t^3*(t^3+1)=t^2$
$y=t^3+1 \Rightarrow (t^3+1)*t^3=t^2$
$y=t^3+t \Rightarrow (t^3+t)*(t^3+t+1)=t$
$y=t^3+t+1 \Rightarrow (t^3+t+1)*(t^3+t)=t$
$y=t^3+t^2 \Rightarrow (t^3+t^2)*(t^3+t^2+1)=t+1$
$y=t^3+t^2+1 \Rightarrow (t^3+t^2+1)*(t^3+t^2)=t+1$
$y=t^3+t^2+t \Rightarrow (t^3+t^2+t)*(t^3+t^2+t+1)=t^2+1$
$y=t^3+t^2+t+1 \Rightarrow (t^3+t^2+t+1)*(t^3+t^2+t)=t^2+1$
That's how I found points from curve:
$(0,0),$
$(0,1),$
$(1,t^2+t),$
$(1,t^2+t+1)$
$(t^2+t,t^2+t),$
$(t^2+t,t^2+t+1)$
$(t^2+t+1,t^2+t),$
$(t^2+t+1,t^2+t+1)$
Now, I'm tpying to calculate $3P$ using formulas:
$P(x_1,y_1) + Q(x_2,y_2) = R(x_3,y_3)$
if $(x_1 = x_2)$
$x_3 = \left(\frac{x_1^2+y_1}{x_1}\right)^2 + \left(\frac{x_1^2+y_1}{x_1}\right)$
$y_3=(\left(\frac{x_1^2+y_1}{x_1}\right)+1)*x_3 + x_1^2$
if $(x_1 \ne x_2)$
$x_3 = \left(\frac{y_1+y_2}{x_1+x_2}\right)^2 + \left(\frac{y_1+y_2}{x_1+x_2}\right)+x_1+x_2$
$y_3=(\left(\frac{y_1+y_2}{x_1+x_2}\right)+1)*x_3 + \left(\frac{y_1*x_2+y_2*x_1}{x_1+x_2}\right)$
I understand that $3P = P+P+P$. But when I put actual numbers in them, I have, for example for point $(0,0)$ $x_3=\left(\frac{0}{0}\right)^2$. What is that? 0?