4

Let $\zeta(n)$ denote the Riemann Zeta function defined for positive integers $n$ as usual by:

$$ \zeta(n)=\sum_{m=1}^{\infty} \frac{1}{m^n}. $$

It is known that for $n=2$ and $3$ there exists a series representation of $\zeta$ of the form:

$$ \zeta (n)=\xi _{{n}}\sum _{{m=1}}^{{\infty }}{\frac {(-1)^{{m-1}}}{m^{{n}}{\binom {2m}{m}}}}, $$

where $\xi_n$ is an algebraic number. We know that $\xi_2 = \frac{\pi^2}{12 \sinh^{-1}(\frac{1}{2})^2}$ and $\xi_3=2.5$. No such $\xi_n$ is known for $n>3$.

It is then natural to examine the behaviour of the function $f:\mathbb{N}\to\mathbb{R}$ defined by:

$$ f(n) = \frac{\zeta (n)}{\sum _{{m=1}}^{{\infty }}{\frac {(-1)^{{m-1}}}{m^{{n}}{\binom {2m}{m}}}}}. $$

Curiously, it looks like $\lim_{n\to\infty} f(n) = 2$. I have tabulated the first values of $f$ below.

\begin{array}{|c|c|} \hline n & f(n) \\ \hline 2 & 3.55178\ldots \\ \hline 3 & 2.5 \\ \hline 4 & 2.20815\ldots \\ \hline 5 & 2.09487\ldots \\ \hline 6 & 2.04507\ldots \\ \hline 7 & 2.02187\ldots \\ \hline 8 & 2.01074\ldots \\ \hline 9 & 2.00531\ldots \\ \hline \end{array}

Is there a good explanation for this?

Klangen
  • 5,075

1 Answers1

2

The limit can be passed inside the summations, and the terms with $m\geq 2$ go to $0$. $$ \lim_{n\to\infty}\zeta(n)=\sum_{m=1}^\infty \lim_{n\to\infty} \frac{1}{m^n}=1, $$ $$ \lim_{n\to\infty}\sum _{{m=1}}^{{\infty }}{\frac {(-1)^{{m-1}}}{m^{{n}}{\binom {2m}{m}}}}=\sum _{{m=1}}^{{\infty }}\lim_{n\to\infty}{\frac {(-1)^{{m-1}}}{m^{{n}}{\binom {2m}{m}}}}=\frac{(-1)^0}{1{2\choose 1}}=\frac{1}{2}. $$

Julian Rosen
  • 16,142