UPDATE 2017/10
We want the closed form for $\,\displaystyle S_m(x):=\sum_{n=1}^\infty \frac{n^m (2x)^{2n}}{\binom{2n}{n}}\,$ for nonnegative $m$ and will start with the well known expression for $m=-2$ :
$$\tag{1}F(x):=2\,\arcsin(x)^2=\sum_{n=1}^\infty \frac{(2x)^{2n}}{n^2\binom{2n}{n}}=S_{-2}(x)$$
From this we deduce :
\begin{align}
F'(x)&=4\,\frac{\arcsin(x)}{\sqrt{1-x^2}}&=4\sum_{n=1}^\infty \frac{(2x)^{2n-1}}{n\binom{2n}{n}}\\
(x\,F'(x))'&=4\,\frac{\frac{\arcsin(x)}{\sqrt{1-x^2}}(1)+x}{1-x^2}&=8\sum_{n=1}^\infty \frac{(2x)^{2n-1}}{\binom{2n}{n}}\\
(x\,(x\,F'(x))')'&=4\,\frac{\frac{\arcsin(x)}{\sqrt{1-x^2}}(1+2x^2)+3x}{(1-x^2)^2}&=16\sum_{n=1}^\infty \frac{n\;(2x)^{2n-1}}{\binom{2n}{n}}\\
&4\,\frac{\frac{\arcsin(x)}{\sqrt{1-x^2}}(1+10x^2+4x^4)+7x+8x^3}{(1-x^2)^3}&=32\sum_{n=1}^\infty \frac{n^2\;(2x)^{2n-1}}{\binom{2n}{n}}\\
&4\,\frac{\frac{\arcsin(x)}{\sqrt{1-x^2}}(1+36x^2+60x^4+8x^6)+15x+70x^3+20x^5}{(1-x^2)^4}&=64\sum_{n=1}^\infty \frac{n^3\;(2x)^{2n-1}}{\binom{2n}{n}}\\
&\cdots
\end{align}
Of course the idea is to take $\;x=\dfrac 1{\sqrt{2}}\,$ and obtain your results after multiplication by $\dfrac{\sqrt{2}}{2^{m+3}}\,$ if $m$ is the power of $n$ at the numerator.
A pattern seems to emerge from these laborious computations. Let's begin with :
$$\tag{2}F_{m-1}(x):=\frac{a(x)P(x)+Q(x)}{(1-x^2)^m}$$
where $\,P(x),\;Q(x)\,$ are two polynomials while $\ a(x):=\dfrac {\arcsin(x)}{\sqrt{1-x^2}}\;$ so that $\ a(x)'=\dfrac{x\,a(x)+1}{1-x^2}$.
The derivative of $\,(x\;F_{m-1}(x))\,$ will then be given by :
\begin{align}
&=\frac{a(x)P(x)+Q(x)}{(1-x^2)^m}+x\left(\frac{a(x)P(x)+Q(x)}{(1-x^2)^m}\right)'\\
&=\frac{(a(x)P(x)+Q(x))\left(1+\dfrac{2mx^2}{1-x^2}\right)+x\left(a(x)'P(x)+a(x)P(x)'+Q(x)'\right)}{(1-x^2)^m}\\
&=\frac{(a(x)P(x)+Q(x))\left(1+\dfrac{2mx^2}{1-x^2}\right)+\dfrac{x^2\,a(x)+x}{1-x^2}P(x)+x(a(x)P(x)'+Q(x)')}{(1-x^2)^m}\\
&=\frac{(a(x)P(x)+Q(x))\left(1+(2m-1)x^2\right)+(x^2\,a(x)+x)P(x)+(x-x^3)(a(x)P(x)'+Q(x)')}{(1-x^2)^{m+1}}\\
&=\frac{a(x)\left[P(x)\left(1+2mx^2\right)+(x-x^3)P(x)'\right]+xP(x)+\left(1+(2m-1)x^2\right)Q(x)+(x-x^3)Q(x)'}{(1-x^2)^{m+1}}\\
\end{align}
which follows clearly our $(2)$ pattern with the recurrence for the polynomials (starting with $\;P_0(x)=1,\;Q_0(x)=x$) given by :
\begin{align}
\tag{3}P_m(x)&=P_{m-1}(x)\left(1+2mx^2\right)+(x-x^3)P_{m-1}(x)'\\
Q_m(x)&=x\,P_{m-1}(x)+\left(1+(2m-1)x^2\right)Q_{m-1}(x)+(x-x^3)Q_{m-1}(x)'\\
\end{align}
From this recurrence we obtain :
$$\tag{4}\boxed{\displaystyle\frac{a(x)P_m(x)+Q_m(x)}{(2\,(1-x^2))^{m+1}}=\sum_{n=1}^\infty \frac{n^m\;(2x)^{2n-1}}{\binom{2n}{n}}=\frac {S_m(x)}{2x}},\quad a(x)=\frac{\arcsin(x)}{\sqrt{1-x^2}}$$
that you may apply to your specific case $\;x=\dfrac 1{\sqrt{2}}\,$ for which $\;a(x)=\dfrac {\pi}{2\sqrt{2}}\,$ and $\,(2\,(1-x^2))=1\,$ (of course the $\sqrt{2}$ terms disappear after multiplication by $\,2x$ ).
$$-$$
We didn't use the fact that $P(x),\;Q(x)$ were polynomials. Let's do that and suppose that $P_m(x)=\sum_{k=0}^m p_k\,x^{2k},\;Q_m(x)=\sum_{k=0}^m q_k\,x^{2k+1}$ then $(3)$ becomes :
\begin{align}
P_m(x)&=\left(\sum_{k=0}^{m-1} p_k\, x^{2k}\right)\left(1+2mx^2\right)+(x-x^3)\left(\sum_{k=0}^{m-1} p_k\, x^{2k}\right)'\\
Q_m(x)&=x\,\left(\sum_{k=0}^{m-1} p_k\, x^{2k}\right)+\left(1+(2m-1)x^2\right)\left(\sum_{k=0}^{m-1} q_k\, x^{2k+1}\right)+(x-x^3)\left(\sum_{k=0}^{m-1} q_k\, x^{2k+1}\right)'\\
\end{align}
Starting with $P_m(x)$ :
\begin{align}
P_m(x)&=\sum_{k=0}^{m-1} p_k\, x^{2k}+2m\sum_{k=1}^{m} p_{k-1}\, x^{2k} +\sum_{k=0}^{m-1} p_k\, 2k\,x^{2k}-\sum_{k=1}^{m} p_{k-1}\, 2(k-1)\,x^{2k}\\
&=p_0+(2m-2(m-1))\,p_{m-1}x^{2m}+\sum_{k=1}^{m-1} \left(p_k+2m\,p_{k-1}+p_k 2k-p_{k-1}\, 2(k-1)\right)\,x^{2k}\\
&=p_0+2\,p_{m-1}x^{2m}+\sum_{k=1}^{m-1} \left((2k+1)\,p_k+2(m-k+1)\,p_{k-1}\right)\,x^{2k}\\
\end{align}
The coefficients $p_k(m)$ of $P_m(x)$ may thus be obtained from the coefficients $p_k(m-1)$ of $P_{m-1}(x)$ (beginning with $\,p_0(m)=1\,$ since $p_0$ is the only $x^0$ term) :
$$\tag{5}p_k(m)=\begin{cases}
k=0 & 1 \\
0<k<m& 2(m-k+1)\,p_{k-1}(m-1)+(2k+1)\,p_k(m-1)\\
k=m & 2\,p_k(m-1)\\
\text{else}& 0
\end{cases}
$$
We may illustrate this by showing how the first coefficients $p_k(m)$ (in blue) were obtained
($k$ is indicated as $\,(k)\,$ in its appropriate diagonal) :
$$
\begin{array} {c|ccccccccccc}
m&&&&&&&\color{blue}{p_k}\\
\hline
&&&&&&&&(0)\\
0&&&&&&&\color{blue}{1}\\
&&&&&&\rlap{\LARGE{\swarrow}}\scriptsize{\ \ \ \times 1}&&\rlap{\LARGE{\searrow}}\scriptsize {\times 2}&&(1)\\
1&&&&&\color{blue}{1}&&&&\color{blue}{2}\\
&&&&\rlap{\LARGE{\swarrow}}\scriptsize{\ \ \ \times 1}&&\rlap{\LARGE{\searrow}}\scriptsize {\times 4}&&\rlap{\LARGE{\swarrow}}\scriptsize{\ \ \ \times 3}&& \rlap{\LARGE{\searrow}}\scriptsize {\times2}&&(2)\\
2&&&\color{blue}{1}&&&&\color{blue}{10}&&&&\color{blue}{4}\\
&&\rlap{\LARGE{\swarrow}}\scriptsize{\ \ \ \times 1}&&\rlap{\LARGE{\searrow}}\scriptsize {\times6}&&\rlap{\LARGE{\swarrow}}\scriptsize{\ \ \ \times 3}&&\rlap{\LARGE{\searrow}}\scriptsize {\times 4}&&\rlap{\LARGE{\swarrow}}\scriptsize{\ \ \ \times 5}&&\rlap{\LARGE{\searrow}}\scriptsize {\times2}&&(3)\\
3&\color{blue}{1}&&&&\color{blue}{36}&&&&\color{blue}{60}&&&&\color{blue}{8}\\
\end{array}
$$
$\qquad\qquad\quad p_2(3)=\color{blue}{60}\,$ for example was obtained as $\;4\times \color{blue}{10}+5\times \color{blue}{4}$.
Concerning $Q_m(x)$ :
\begin{align}
Q_m(x)&=\sum_{k=0}^{m-1} p_k\, x^{2k+1}+\sum_{k=0}^{m-1} q_k\, x^{2k+1}+(2m-1)\sum_{k=1}^{m} q_{k-1}\, x^{2k+1}\\&\quad+\sum_{k=0}^{m-1} q_k\, (2k+1)\,x^{2k+1}-\sum_{k=1}^{m} q_{k-1}\, (2k-1)\,x^{2k+1}\\
&=(p_0+2q_0)x+\sum_{k=1}^{m-1}\left(p_k+q_k+(2m-1)\,q_{k-1}+q_k\, (2k+1)-q_{k-1}\,(2k-1)\right)\,x^{2k+1}\\
&=(1+2q_0)x+\sum_{k=1}^{m-1}\left(p_k+2(m-k)\,q_{k-1}+2(k+1)\,q_k\right)\,x^{2k+1}\\
\end{align}
$$\tag{6}q_k(m)=\begin{cases}
k=0 & \begin{cases} m=0 & 1 \\m>0&1+2\,q_0(m-1) \\ \end{cases}\\
0<k<m& p_k(m-1)+2(m-k)\,q_{k-1}(m-1)+2(k+1)\,q_k(m-1)\\
\text{else}&0
\end{cases}$$
These results were obtained earlier by D.H. Lehmer in "Interesting Series Involving the Central Binomial" (pdf here "télécharger" Lehmer_binom.pdf).
The $p_k(m)$ triangle appears too in OEIS A156919 and in Savage and Viswanathan's paper "The $1/k$-Eulerian Polynomials" (for $k:=2$) and following generating function is provided (Alpha) :
\begin{align}
\tag{7}\sqrt{\frac {1-y}{\exp(2z(y-1))-y}}&=\sum_{n\ge 0}A_n^{(2)}(y)\frac {z^n}{n!}\\
&=1+z+(1+2y)\frac{z^2}{2!}+(1+10y+4y^2)\frac{z^3}{3!}+\cdots
\end{align}
In your specific case $\,y=x^2=\dfrac 12$ this becomes this exponential generating function (e.g.f.) :
$$\tag{8}\frac 1{\sqrt{2\exp(-z)-1}}=1+1z+2\frac{z^2}{2!}+7\frac{z^3}{3!}+35\frac{z^4}{4!}+226\frac{z^5}{5!}+\cdots$$
(OEIS A014307: exactly your numerators $\;1,2,7,35,226,\cdots\;$ for the $\dfrac {\pi}2$ terms!)
$$-$$
2017 ADDITION:
Your integer sequence $\;1,3,11,55,355,\cdots$ is known too (OEIS A180875) but with no indicated generating function. An idea to get this one is to obtain the exponential generating function for the complete $S_m(x)$ terms first (subtracting $\frac {\pi}2$ times $(8)$ should then return the wished e.g.f. and sequence).
Let's multiply $(4)$ by $\;\displaystyle (2x)(2\,(1-x^2))^{m+1}\frac{z^m}{m!}\;$ and sum over $m$ to get :
\begin{align}
G_x(z)&:=(2x)\sum_{m=0}^\infty \left(a(x)P_m(x)+Q_m(x)\right)\frac{z^m}{m!}\tag{9}\\
&=\sum_{m=0}^\infty S_m(x) \left(2\left(1-x^2\right)\right)^{m+1}\frac{z^m}{m!}\\
&=\sum_{m=0}^\infty\sum_{n=1}^\infty \frac{n^m\;(2x)^{2n}}{\binom{2n}{n}} \left(2\left(1-x^2\right)\right)^{m+1}\frac{z^m}{m!}\\
&=2\left(1-x^2\right)\sum_{n=1}^\infty \frac{(2x)^{2n}}{\binom{2n}{n}} \sum_{m=0}^\infty\frac{\left(2n\left(1-x^2\right)z\right)^m}{m!}\\
&=2\left(1-x^2\right)\sum_{n=1}^\infty \frac{(2x)^{2n}\,\exp\left(2n\left(1-x^2\right)z\right)}{\binom{2n}{n}}\\
&=2\left(1-x^2\right)\sum_{n=1}^\infty \frac{\left(2x\exp\left(\left(1-x^2\right)z\right)\right)^{2n}}{\binom{2n}{n}}\\
&=2\left(1-x^2\right)S_0(u),\quad\text{for}\ \,u:=x\exp\left(\left(1-x^2\right)z\right)\\
G_x(z)&=2\left(1-x^2\right)u\,\frac{\large{\frac{\arcsin(u)}{\sqrt{1-u^2}}}+u}{1-u^2}\tag{10}\\
\end{align}
since in our third equation $\,\displaystyle\frac x4(x\,F'(x))'\,$ gives
$\;\displaystyle S_0(u)=\sum_{n=1}^\infty \frac{(2u)^{2n}}{\binom{2n}{n}}=u\,\frac{\large{\frac{\arcsin(u)}{\sqrt{1-u^2}}}+u}{1-u^2}$.
From the definition $(9)$ we may then use $(10)$ to evaluate for any $m\in \mathbb{N}$ the terms :
$$\tag{11}(2x)\left(a(x)P_m(x)+Q_m(x)\right)=S_m(x)\left(2\left(1-x^2\right)\right)^{m+1}=\left.\left(\frac d{dz}\right)^m\right|_{z=0} G_x(z)$$
(the e.g.f. of the sole $\,S_m(x)$ terms is obtained by preferring $\;u:=x\,\exp(z/2)\;$)
In our specific case $\,x=\dfrac 1{\sqrt{2}}\,$ we have $\,u=\dfrac {\exp(z/2)}{\sqrt{2}}$ and $(10)$ and $(11)$ become :
\begin{align}
\tag{12}G_{\large{\frac 1{\sqrt{2}}}}(z)&=\frac{\large{u\frac{\arcsin(u)}{\sqrt{1-u^2}}}+u^2}{1-u^2}=\frac{{2\exp(z/2)}\frac{\arcsin(\exp(z/2)/\sqrt{2})}{\sqrt{2-\exp(z)}}+\exp(z)}{2-\exp(z)}\\
S_m\left(\frac{\pi}2\right)&=\frac{\pi}2 P_m\left(\dfrac 1{\sqrt{2}}\right)+\sqrt{2}\,Q_m\left(\dfrac 1{\sqrt{2}}\right)\\
\tag{13}&=\left.\left(\frac d{dz}\right)^m\right|_{z=0} \frac{{2\exp(z/2)}\frac{\arcsin(\exp(z/2)/\sqrt{2})}{\sqrt{2-\exp(z)}}+\exp(z)}{2-\exp(z)}\\
\tag{14}&=\left.\left(\frac d{dz}\right)^{m+1}\right|_{z=0} \frac{{2\exp(z/2)}\arcsin(\exp(z/2)/\sqrt{2})}{\sqrt{2-\exp(z)}}\\
\tag{15}&=\left.\left(\frac d{dz}\right)^{m+2}\right|_{z=0} 2\arcsin^2\left(\frac{\exp(z/2)}{\sqrt{2}}\right)\\
&\text{(integrating twice at the end)}\\
\end{align}
The last equation provides a very nice method to obtain all the $S(m)$ terms in the question
(btw $\,S(0)=1+\frac {\pi}2\,$ rather than $\,2+\frac {\pi}2\,$) :
- expand $\;\displaystyle 2\arcsin^2\left(\frac{\exp(z/2)}{\sqrt{2}}\right)$ in series :
$$2\arcsin^2\left(\frac{\exp(z/2)}{\sqrt{2}}\right)=\frac{\pi^2}8+\frac{\pi}2z+\left(\frac {\pi}2+1\right)\frac{z^2}{2!}+\left(\frac{2\pi}2+3\right)\frac{z^3}{3!}+\left(\frac{7\pi}2+11\right)\frac{z^4}{4!}+\left(\frac{35\pi}2+55\right)\frac{z^5}{5!}+\cdots$$
- and compute the second derivative or simply ignore the two first terms and shift by $2$ the remaining ones!
Concerning an e.g.f. for $\;1,3,11,55,\cdots$ we will rewrite $(14)$ and combine it with $(8)$ to get :
$$\frac{{2}\arcsin(\exp(z/2)/\sqrt{2})-\large{\frac {\pi}2}}{\sqrt{2\exp(-z)-1}}=1z+3\frac{z^2}{2!}+11\frac{z^3}{3!}+55\frac{z^4}{4!}+355\frac{z^5}{5!}+2807\frac{z^6}{6!}+\cdots$$
For an explicit general solution (instead of the recursive method provided) see this neat paper by the masters :
- Dyson, Frankel and Glasser "Lehmer's Interesting Series"
where they obtain following expression $(20)$ for $\;\displaystyle S_k(z) = \sum_{n=1}^{\infty} \frac{n^kz^n}{{2n \choose n}}\;$ :
$$\tag{16}S_k(z)=\sum_{n=1}^{k+1} n! \left({\frac{z}{4-z}}\right)^n\ E(k,n)\\
\left[\frac{1}{n} + \sum_{p=0}^{n-1} (-1)^p
\frac{({\frac{1}{2}})_p}{(p+1)!}\ C^{n-1}_p
\left({\frac 4z}\right)^{p+1}
\left\{ \sqrt{\frac{z}{4-z}}\arcsin\left({\frac{\sqrt{z}}{2}}\right)- \frac{1}{2} \sum_{l=1}^p \frac{\Gamma(l)}{\left({\frac{1}{2}}\right)_l}
\left(\frac{z}{4}\right)^l\right\}\right]$$
with $\;\displaystyle E(k,n) := \frac{(-1)^n}{n!} \sum_{m=1}^n (-1)^m\ C^{n}_m\ m^{k+1}$ the Stirling numbers of the second kind
and $\left({\dfrac{1}{2}}\right)_l$ the Pochhammer symbol.
Comparing this to $(1)$ we see that $z=(2x)^2$ while $k=m$ (of course you want $z=2$ here).
This paper includes too your interesting observation about the ratios approaching $\pi$ (page $12$).
A subsequent paper by Glasser ($2012$) is "A Generalized Apery Series".