Algorithm discussed at http://math.stackexchange.com/questions/1388421/reference-for-linear-algebra-books-that-teach-reverse-hermite-method-for-symmetr
https://en.wikipedia.org/wiki/Sylvester%27s_law_of_inertia
$$ H = \left(
\begin{array}{rrr}
6 & - 6 & - 6 \\
- 6 & 8 & 8 \\
- 6 & 8 & 12 \\
\end{array}
\right)
$$
$$ D_0 = H $$
Each step is a choice of "elementary" matrix $E_j$ and then
$$ E_j^T D_{j-1} E_j = D_j $$
$$ P_{j-1} E_j = P_j $$
$$ E_j^{-1} Q_{j-1} = Q_j $$
so that we always have these three:
$$ P_j Q_j = Q_j P_j = I $$
$$ P_j^T H P_j = D_j $$
$$ Q_j^T D_j Q_j = H $$
$$ $$
$$ H = \left(
\begin{array}{rrr}
6 & - 6 & - 6 \\
- 6 & 8 & 8 \\
- 6 & 8 & 12 \\
\end{array}
\right)
$$
==============================================
$$ E_{1} = \left(
\begin{array}{rrr}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{array}
\right)
$$
$$ P_{1} = \left(
\begin{array}{rrr}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; Q_{1} = \left(
\begin{array}{rrr}
1 & - 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; D_{1} = \left(
\begin{array}{rrr}
6 & 0 & - 6 \\
0 & 2 & 2 \\
- 6 & 2 & 12 \\
\end{array}
\right)
$$
==============================================
$$ E_{2} = \left(
\begin{array}{rrr}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{array}
\right)
$$
$$ P_{2} = \left(
\begin{array}{rrr}
1 & 1 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; Q_{2} = \left(
\begin{array}{rrr}
1 & - 1 & - 1 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; D_{2} = \left(
\begin{array}{rrr}
6 & 0 & 0 \\
0 & 2 & 2 \\
0 & 2 & 6 \\
\end{array}
\right)
$$
==============================================
$$ E_{3} = \left(
\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & - 1 \\
0 & 0 & 1 \\
\end{array}
\right)
$$
$$ P_{3} = \left(
\begin{array}{rrr}
1 & 1 & 0 \\
0 & 1 & - 1 \\
0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; Q_{3} = \left(
\begin{array}{rrr}
1 & - 1 & - 1 \\
0 & 1 & 1 \\
0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; D_{3} = \left(
\begin{array}{rrr}
6 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 4 \\
\end{array}
\right)
$$
==============================================
$$ P^T H P = D $$
$$\left(
\begin{array}{rrr}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & - 1 & 1 \\
\end{array}
\right)
\left(
\begin{array}{rrr}
6 & - 6 & - 6 \\
- 6 & 8 & 8 \\
- 6 & 8 & 12 \\
\end{array}
\right)
\left(
\begin{array}{rrr}
1 & 1 & 0 \\
0 & 1 & - 1 \\
0 & 0 & 1 \\
\end{array}
\right)
= \left(
\begin{array}{rrr}
6 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 4 \\
\end{array}
\right)
$$
$$ Q^T D Q = H $$
$$\left(
\begin{array}{rrr}
1 & 0 & 0 \\
- 1 & 1 & 0 \\
- 1 & 1 & 1 \\
\end{array}
\right)
\left(
\begin{array}{rrr}
6 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 4 \\
\end{array}
\right)
\left(
\begin{array}{rrr}
1 & - 1 & - 1 \\
0 & 1 & 1 \\
0 & 0 & 1 \\
\end{array}
\right)
= \left(
\begin{array}{rrr}
6 & - 6 & - 6 \\
- 6 & 8 & 8 \\
- 6 & 8 & 12 \\
\end{array}
\right)
$$
...................