$$\lim_{n\rightarrow \infty}\bigg(1+\sum^{n}_{r=1}\frac{2}{\binom{n}{r}}\bigg)^n$$
solution i try
$$\bigg(1+\frac{2}{n}\bigg)^n<\bigg(1+\sum^{n}_{r=1}\frac{2}{\binom{n}{r}}\bigg)<\bigg(1+\frac{2}{n}+\frac{2}{\binom{n}{2}}+\cdots +\frac{2}{\binom{n}{1}}+2\bigg)^n$$
I am struck here. did not know how to solve it . help me to do that problem . Thanks