In the answer, of this question Nice proofs of $\zeta(4) = \frac{\pi^4}{90}$?, given by Christian Blatter,
- Why $|c_{\pm k}|^2={1\over4}a_k^2={4\over k^4}$ $\ (k\geq1)$ ?
According to my calculations $|c_{\pm k}|^2=\vert1/2\pi\int_{-\pi}^\pi t^2e^{-i(\pm k)x}dx\vert^2=\vert t^2\sin(\pi(\pm k))/\pi(\pm k)\vert^2=0$
- And how did he get $\frac{\pi^4}{90}?$
Consider the function $f(t):=t^2\ \ (-\pi\leq t\leq \pi)$, extended to all of ${\mathbb R}$ periodically with period $2\pi$. Developping $f$ into a Fourier series we get $$t^2 ={\pi^2\over3}+\sum_{k=1}^\infty {4(-1)^k\over k^2}\cos(kt)\qquad(-\pi\leq t\leq \pi).$$ If we put $t:=\pi$ here we easily find $\zeta(2)={\pi^2\over6}$. For $\zeta(4)$ we use Parseval's formula $$\|f\|^2=\sum_{k=-\infty}^\infty |c_k|^2\ .$$ Here $$\|f\|^2={1\over2\pi}\int_{-\pi}^\pi t^4\>dt={\pi^4\over5}$$ and the $c_k$ are the complex Fourier coefficients of $f$. Therefore $c_0={\pi^2\over3}$ and $|c_{\pm k}|^2={1\over4}a_k^2={4\over k^4}$ $\ (k\geq1)$. Putting it all together gives $\zeta(4)={\pi^4\over 90}$.