- How was $\pi^4/90$ calculated here in the answer?
Attempt:
We have that $c_0=\pi^2/3$ and $|c_{\pm k}|^2=4/k^4$ thus $|c_k|^2=|c_{\pm k}+c_0|^2\ ?$
Or what should I put in the $|c_k|^2$ here $\sum_{k=-\infty}^\infty |c_k|^2\ $?
Thanks in advance for your help.
Answer (By Christian Blatter user)
Consider the function $f(t):=t^2\ \ (-\pi\leq t\leq \pi)$, extended to all of ${\mathbb R}$ periodically with period $2\pi$. Developping $f$ into a Fourier series we get $$t^2 ={\pi^2\over3}+\sum_{k=1}^\infty {4(-1)^k\over k^2}\cos(kt)\qquad(-\pi\leq t\leq \pi).$$ If we put $t:=\pi$ here we easily find $\zeta(2)={\pi^2\over6}$. For $\zeta(4)$ we use Parseval's formula $$\|f\|^2=\sum_{k=-\infty}^\infty |c_k|^2\ .$$ Here $$\|f\|^2={1\over2\pi}\int_{-\pi}^\pi t^4\>dt={\pi^4\over5}$$ and the $c_k$ are the complex Fourier coefficients of $f$. Therefore $c_0={\pi^2\over3}$ and $|c_{\pm k}|^2={1\over4}a_k^2={4\over k^4}$ $\ (k\geq1)$. Putting it all together gives $\zeta(4)={\pi^4\over 90}$.