[This question is a refinement of my other question here for a specific $b_{n,k}$]
Consider
a mapping $u$ on $\mathbb{N} \mapsto (0,\infty)$ with $k \mapsto u(k)\equiv u_k$, bounded in absolute value by $\bar{u}<\infty$.
a mapping $a$ on $\mathbb{N} \mapsto \mathbb{R}$ with $n\mapsto a(n)\equiv a_n$.
a mapping $b$ on $\mathbb{N} \mapsto \mathbb{R}$ with $n\mapsto b(n)\equiv b_n$.
$\forall t \in \mathbb{R}$ $\forall n \in \mathbb{N}$, let $$ c_n(t)\equiv \sum_{k=1}^{2n} \log(G(a_n*(t+u_k)+b_n)) $$ and $$ \tilde{c}_n(t) \equiv \sum_{k=1}^{2n} (1-G(a_n*(t+u_k)+b_n)) $$ Assume also that
$G:\mathbb{R}\rightarrow [0,1]$
$G$ continuous and strictly monotone increasing on $\mathbb{R}$
$\lim_{x\rightarrow \infty}G(x)=1$
$\lim_{x\rightarrow -\infty}G(x)=0$
ADDED: $G$ is such that $$ \exists \text{ }A:\mathbb{R}\rightarrow (0,\infty) \text{ s.t. } \lim_{s\rightarrow \infty }\frac{1-G(s+v A(s))}{1-G(s)} = e^{-v}\text{ }\forall v \in \mathbb{R} $$ Moreover, $A(s)\equiv \frac{1-G(s)}{g(s)}$ where $G(s)\equiv \int_{-\infty}^s g(e) de$ $\forall s \in \mathbb{R}$.
$b_n\equiv G^{-1}(1-\frac{1}{n})$, so that $\lim_{n\rightarrow \infty}b_{n}=\infty$ (which implies $\lim_{n\rightarrow \infty}G(b_{n})=1$)
$a_n\equiv A(b_n)$.
Under these conditions it can be shown that $\lim_{n\rightarrow \infty} G(a_n*(t+u_k)+b_n)=1$ $\forall k$ $\forall t$.
I want to show that $\forall t \in \mathbb{R}$ $$ \lim_{n\rightarrow \infty}(c_n(t)+\tilde{c}_n(t))=0 $$ or, equivalently, $$ c_n(t)=-\tilde{c}_n(t)+o(1) $$ and your help would be extremely appreciated
I have attempted to start the proof (incomplete!)
CASE 1: $t$ such that $t+\bar{u}\leq 0$ $\Rightarrow$ $t+u_k\leq 0$. In this case $$ 0<G(a_n*(t+u_k)+b_n)\leq G(a_n*(t+\bar{u})+b_n)\leq G(b_n)=1-\frac{1}{n} \hspace{1cm} \text{$\forall n, k$} $$ $$ \Downarrow $$ $$ 0<G(a_n*(t+u_k)+b_n)\leq 1-\frac{1}{n} \hspace{1cm} \text{$\forall n, k$} $$ We know that for $x\in (0,1)$ $1-x+\log(x)\leq -(1-x)^2/2$. Applying this rule to $1-\frac{1}{n}$, we get $$ 1-(1-\frac{1}{n})+\log(1-\frac{1}{n})\leq -\frac{1}{2n^2} \hspace{1cm} \text{$\forall n$} $$ We can show that if $0<G(a_n*(t+u_k)+b_n)\leq 1-\frac{1}{n}$, then $$1-G(a_n*(t+u_k)+b_n)+\log(G(a_n*(t+u_k)+b_n))\leq 1-(1-\frac{1}{n})+\log(1-\frac{1}{n}) \hspace{1cm} \text{$\forall n, k$}$$
Hence, $$ 1-G(a_n*(t+u_k)+b_n)+\log(G(a_n*(t+u_k)+b_n))\leq -\frac{1}{2n^2} \hspace{1cm} \text{$\forall n, k$} $$ $$ \Downarrow $$ $$ \sum_{k=1}^{2n} (1-G(a_n*(t+u_k)+b_n)+\log(G(a_n*(t+u_k)+b_n)))\leq -\frac{1}{n} \hspace{1cm} \text{$\forall n$} $$ How do I conclude that the limit is zero?
CASE 2: $t$ such that $t+\bar{u}\geq 0$. This is much more complicated because we may have $t+u_k\geq 0$ for some $k$ and $t+u_k\leq 0$ for some other. I divide into two subcases.
SUBCASE 2.1: $\max_{k} \{t+u_k\}\leq 0$. In this case $$ 0<G(a_n*(t+u_k)+b_n)\leq G(b_n)=1-\frac{1}{n}\leq G(a_n*(t+\bar{u})+b_n) \hspace{1cm} \text{$\forall n, k$} $$ and we go back to case 1.
SUBCASE 2.2: $\max_{k} \{t+u_k\}\geq 0$. In this case $$ 1-\frac{1}{n}=G(b_n)\leq G(a_n*(t+u_k)+b_n)\leq G(a_n*(t+\bar{u})+b_n) \hspace{1cm} \text{$\forall n$, for at least one $k$} $$ $$ 0<G(a_n*(t+u_k)+b_n)\leq G(b_n)=1-\frac{1}{n}\leq G(a_n*(t+\bar{u})+b_n) \hspace{1cm} \text{$\forall n$, for the remaining $k$} $$ I don't know how to proceed