My question is about the convergence of sums of two-dimensional arrays of reals. What I mean by a two-dimensional array is a mapping on $\mathbb{N}\times\mathbb{N} \mapsto \mathbb{R}$. Let $b_{n,k}$ be such a mapping, i.e. $(n,k) \mapsto b_{n,k}$.
Let $$ a_n\equiv \sum_{k=1}^{2n} \log(G(b_{n,k})) $$ and $$ \tilde{a}_n \equiv \sum_{k=1}^{2n} (1-G(b_{n,k})) $$ Assume also that
$G:\mathbb{R}\rightarrow [0,1]$ ,
$G$ continuous and strictly monotone increasing on $\mathbb{R}$.
$\lim_{x\rightarrow \infty}G(x)=1$
$\lim_{x\rightarrow -\infty}G(x)=0$
$\lim_{n\rightarrow \infty}b_{n,k}=\infty$ $\forall k$ (which implies $\lim_{n\rightarrow \infty}G(b_{n,k})=1$ $\forall k$)
I want to show $$ \lim_{n\rightarrow \infty}(a_n+\tilde{a}_n)=0 $$ and your hint would be extremely appreciated
This is what I have tried to do and where I am stuck:
Step 1: $$ \begin{cases} \lim_{n\rightarrow \infty} \log(G(b_{n,k}))=0 & \forall k\in 1,...,2n\\ \lim_{n\rightarrow \infty} (1-G(b_{n,k}))=0 & \forall k\in 1,...,2n\\ \end{cases} $$
Step 2 (wrong as explained here): from Step 1 it follows $$ \begin{cases} \lim_{n\rightarrow \infty}\sum_{k=1}^{2n} \log(G(b_{n,k}))=0 \\ \lim_{n\rightarrow \infty} \sum_{k=1}^{2n} (1-G(b_{n,k}))=0 \\ \end{cases} $$ which implies $$ \lim_{n\rightarrow \infty}\Big[\sum_{k=1}^{2n}\log(G(b_{n,k}))+\sum_{k=1}^{2n} (1-G(b_{n,k}))\Big]=0 $$
Also this question on the possibility of exchanging limit and infinite summation may be related.