Compute the following limit: $$\lim_{n\to\infty}\int_\limits{0}^{\infty}\frac{dx}{x^{n}+1}$$.
So I thought to use the result:
a) If $\{F_n\}$ converges uniformly on $S=[a,b]$ to $F$ and $F_n$ is integrable $\forall n$. Then $\int_\limits{a}^{b}F(x)dx=\lim\limits_{n\to\infty}\int_\limits{a}^{b}F_n(x)dx$.
$$ \lim_{n\to\infty}\int_\limits{0}^{\infty}\frac{dx}{x^{n}+1}=\lim_{n\to\infty}\int_\limits{0}^{1-\delta}\frac{dx}{x^{n}+1}+\lim_{n\to\infty}\int_\limits{1-\delta}^{1+\delta}\frac{dx}{x^{n}+1}+\lim_{n\to\infty}\int_\limits{1+\delta}^{\infty}\frac{dx}{x^{n}+1} $$
I can easily pass the limit under the integral in the first and third integral which gives me the results of $1-\delta$ and $0$ respectively.
However my problems lie in the second integral: $\lim\limits_{n\to\infty}\int_\limits{1-\delta}^{1+\delta}\frac{dx}{x^n+1}$
I changed the variable $y=1-x$ which led me to $\lim\limits_{n\to\infty}\int_\limits{-\delta}^{\delta}\frac{dy}{(1-y)^{n}+1}=?$
Question:
How do I compute $\lim\limits_{n\to\infty}\int_\limits{-\delta}^{\delta}\frac{dy}{(1-y)^{n}+1}=$? As the delta is arbitrary I do not know how $1-y$ is going to behave.