As far as deciding positive definite for a symmetric matrix, it is enough, and usually more accurate, to ignore the eigenvalues and just find $P^T A P = D,$ where $P$ is nothing special except $\det P \neq 0.$ There is an algorithm for this, I put information on how to construct $P$ a step at a time, see http://math.stackexchange.com/questions/1388421/reference-for-linear-algebra-books-that-teach-reverse-hermite-method-for-symmetr
Given the outcome, I suggest checking when the variable matrix entry is set to $3/2 = 1.5 \; .$ Alright, did it myself, when the variable matrix entry is set to $3/2,$ the characteristic polynomial becomes
$$ \frac{1}{4} \left( 2 \lambda^2 - 9 \lambda - 1 \right) \left( 2 \lambda^2 - 9 \lambda + 8 \right), $$
eigenvalues can be found with quadratic formula, anyway $\{
-0.108495, 1.21922, 3.2807764, 4.608495\} \; .$ The negative eigenvalue for this specific matrix is $(9 - \sqrt{89})/4$
I am using the variable $t$ instead of $x.$ take
$$
P =
\left(
\begin{array}{cccc}
1&\frac{-1}{4}&\frac{t}{7}&\frac{t}{4 t^2 - 14} \\
0&1&\frac{-4t}{7}&\frac{-4t}{4t^2-14} \\
0&0&1&\frac{7}{4 t^2 - 14} \\
0&0&0&1 \\
\end{array}
\right)
$$
$$
D = P^T AP =
\left(
\begin{array}{cccc}
4&0&0&0 \\
0&\frac{7}{4}&0&0 \\
0&0&\frac{14 - 4t^2}{7}&0 \\
0&0&0&\frac{7 - 4 t^2}{14 - 4 t^2} \\
\end{array}
\right)
$$
For positive definite, by Sylvester's Law of Inertia, you need
$$ 14 - 4 t^2 > 0 \; , $$
$$ 7 - 4 t^2 > 0 \; . $$
Both
$$ |t| < \sqrt{ \frac{7}{2} } \approx 1.87\; , $$
$$ |t| < \sqrt{ \frac{7}{4} } \approx 1.32 \; , $$
The second implies both so we need $|t| < \sqrt{ \frac{7}{4} } \approx 1.32$
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
Added: it occurred to me that I could double your matrix and make the variable entry $3$ instead of $3/2,$ to use my integer/rational software
$$ P^T H P = D $$
$$\left(
\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
- \frac{ 1 }{ 4 } & 1 & 0 & 0 \\
\frac{ 3 }{ 14 } & - \frac{ 6 }{ 7 } & 1 & 0 \\
- \frac{ 3 }{ 10 } & \frac{ 6 }{ 5 } & - \frac{ 7 }{ 5 } & 1 \\
\end{array}
\right)
\left(
\begin{array}{rrrr}
8 & 2 & 0 & 0 \\
2 & 4 & 3 & 0 \\
0 & 3 & 4 & 2 \\
0 & 0 & 2 & 2 \\
\end{array}
\right)
\left(
\begin{array}{rrrr}
1 & - \frac{ 1 }{ 4 } & \frac{ 3 }{ 14 } & - \frac{ 3 }{ 10 } \\
0 & 1 & - \frac{ 6 }{ 7 } & \frac{ 6 }{ 5 } \\
0 & 0 & 1 & - \frac{ 7 }{ 5 } \\
0 & 0 & 0 & 1 \\
\end{array}
\right)
= \left(
\begin{array}{rrrr}
8 & 0 & 0 & 0 \\
0 & \frac{ 7 }{ 2 } & 0 & 0 \\
0 & 0 & \frac{ 10 }{ 7 } & 0 \\
0 & 0 & 0 & - \frac{ 4 }{ 5 } \\
\end{array}
\right)
$$
$$ Q^T D Q = H $$
$$\left(
\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
\frac{ 1 }{ 4 } & 1 & 0 & 0 \\
0 & \frac{ 6 }{ 7 } & 1 & 0 \\
0 & 0 & \frac{ 7 }{ 5 } & 1 \\
\end{array}
\right)
\left(
\begin{array}{rrrr}
8 & 0 & 0 & 0 \\
0 & \frac{ 7 }{ 2 } & 0 & 0 \\
0 & 0 & \frac{ 10 }{ 7 } & 0 \\
0 & 0 & 0 & - \frac{ 4 }{ 5 } \\
\end{array}
\right)
\left(
\begin{array}{rrrr}
1 & \frac{ 1 }{ 4 } & 0 & 0 \\
0 & 1 & \frac{ 6 }{ 7 } & 0 \\
0 & 0 & 1 & \frac{ 7 }{ 5 } \\
0 & 0 & 0 & 1 \\
\end{array}
\right)
= \left(
\begin{array}{rrrr}
8 & 2 & 0 & 0 \\
2 & 4 & 3 & 0 \\
0 & 3 & 4 & 2 \\
0 & 0 & 2 & 2 \\
\end{array}
\right)
$$
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
Algorithm discussed at http://math.stackexchange.com/questions/1388421/reference-for-linear-algebra-books-that-teach-reverse-hermite-method-for-symmetr
$$ H = \left(
\begin{array}{rrrr}
8 & 2 & 0 & 0 \\
2 & 4 & 3 & 0 \\
0 & 3 & 4 & 2 \\
0 & 0 & 2 & 2 \\
\end{array}
\right)
$$
$$ D_0 = H $$
$$ E_j^T D_{j-1} E_j = D_j $$
$$ P_{j-1} E_j = P_j $$
$$ E_j^{-1} Q_{j-1} = Q_j $$
$$ P_j Q_j = Q_j P_j = I $$
$$ P_j^T H P_j = D_j $$
$$ Q_j^T D_j Q_j = H $$
$$ H = \left(
\begin{array}{rrrr}
8 & 2 & 0 & 0 \\
2 & 4 & 3 & 0 \\
0 & 3 & 4 & 2 \\
0 & 0 & 2 & 2 \\
\end{array}
\right)
$$
==============================================
$$ E_{1} = \left(
\begin{array}{rrrr}
1 & - \frac{ 1 }{ 4 } & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{array}
\right)
$$
$$ P_{1} = \left(
\begin{array}{rrrr}
1 & - \frac{ 1 }{ 4 } & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; Q_{1} = \left(
\begin{array}{rrrr}
1 & \frac{ 1 }{ 4 } & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; D_{1} = \left(
\begin{array}{rrrr}
8 & 0 & 0 & 0 \\
0 & \frac{ 7 }{ 2 } & 3 & 0 \\
0 & 3 & 4 & 2 \\
0 & 0 & 2 & 2 \\
\end{array}
\right)
$$
==============================================
$$ E_{2} = \left(
\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & - \frac{ 6 }{ 7 } & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{array}
\right)
$$
$$ P_{2} = \left(
\begin{array}{rrrr}
1 & - \frac{ 1 }{ 4 } & \frac{ 3 }{ 14 } & 0 \\
0 & 1 & - \frac{ 6 }{ 7 } & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; Q_{2} = \left(
\begin{array}{rrrr}
1 & \frac{ 1 }{ 4 } & 0 & 0 \\
0 & 1 & \frac{ 6 }{ 7 } & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; D_{2} = \left(
\begin{array}{rrrr}
8 & 0 & 0 & 0 \\
0 & \frac{ 7 }{ 2 } & 0 & 0 \\
0 & 0 & \frac{ 10 }{ 7 } & 2 \\
0 & 0 & 2 & 2 \\
\end{array}
\right)
$$
==============================================
$$ E_{3} = \left(
\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & - \frac{ 7 }{ 5 } \\
0 & 0 & 0 & 1 \\
\end{array}
\right)
$$
$$ P_{3} = \left(
\begin{array}{rrrr}
1 & - \frac{ 1 }{ 4 } & \frac{ 3 }{ 14 } & - \frac{ 3 }{ 10 } \\
0 & 1 & - \frac{ 6 }{ 7 } & \frac{ 6 }{ 5 } \\
0 & 0 & 1 & - \frac{ 7 }{ 5 } \\
0 & 0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; Q_{3} = \left(
\begin{array}{rrrr}
1 & \frac{ 1 }{ 4 } & 0 & 0 \\
0 & 1 & \frac{ 6 }{ 7 } & 0 \\
0 & 0 & 1 & \frac{ 7 }{ 5 } \\
0 & 0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; D_{3} = \left(
\begin{array}{rrrr}
8 & 0 & 0 & 0 \\
0 & \frac{ 7 }{ 2 } & 0 & 0 \\
0 & 0 & \frac{ 10 }{ 7 } & 0 \\
0 & 0 & 0 & - \frac{ 4 }{ 5 } \\
\end{array}
\right)
$$
==============================================
$$ P^T H P = D $$
$$\left(
\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
- \frac{ 1 }{ 4 } & 1 & 0 & 0 \\
\frac{ 3 }{ 14 } & - \frac{ 6 }{ 7 } & 1 & 0 \\
- \frac{ 3 }{ 10 } & \frac{ 6 }{ 5 } & - \frac{ 7 }{ 5 } & 1 \\
\end{array}
\right)
\left(
\begin{array}{rrrr}
8 & 2 & 0 & 0 \\
2 & 4 & 3 & 0 \\
0 & 3 & 4 & 2 \\
0 & 0 & 2 & 2 \\
\end{array}
\right)
\left(
\begin{array}{rrrr}
1 & - \frac{ 1 }{ 4 } & \frac{ 3 }{ 14 } & - \frac{ 3 }{ 10 } \\
0 & 1 & - \frac{ 6 }{ 7 } & \frac{ 6 }{ 5 } \\
0 & 0 & 1 & - \frac{ 7 }{ 5 } \\
0 & 0 & 0 & 1 \\
\end{array}
\right)
= \left(
\begin{array}{rrrr}
8 & 0 & 0 & 0 \\
0 & \frac{ 7 }{ 2 } & 0 & 0 \\
0 & 0 & \frac{ 10 }{ 7 } & 0 \\
0 & 0 & 0 & - \frac{ 4 }{ 5 } \\
\end{array}
\right)
$$
$$ Q^T D Q = H $$
$$\left(
\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
\frac{ 1 }{ 4 } & 1 & 0 & 0 \\
0 & \frac{ 6 }{ 7 } & 1 & 0 \\
0 & 0 & \frac{ 7 }{ 5 } & 1 \\
\end{array}
\right)
\left(
\begin{array}{rrrr}
8 & 0 & 0 & 0 \\
0 & \frac{ 7 }{ 2 } & 0 & 0 \\
0 & 0 & \frac{ 10 }{ 7 } & 0 \\
0 & 0 & 0 & - \frac{ 4 }{ 5 } \\
\end{array}
\right)
\left(
\begin{array}{rrrr}
1 & \frac{ 1 }{ 4 } & 0 & 0 \\
0 & 1 & \frac{ 6 }{ 7 } & 0 \\
0 & 0 & 1 & \frac{ 7 }{ 5 } \\
0 & 0 & 0 & 1 \\
\end{array}
\right)
= \left(
\begin{array}{rrrr}
8 & 2 & 0 & 0 \\
2 & 4 & 3 & 0 \\
0 & 3 & 4 & 2 \\
0 & 0 & 2 & 2 \\
\end{array}
\right)
$$