$\newenvironment{gmatrix}{\left\lgroup\begin{matrix}}{\end{matrix}\right\rgroup}$In general, to find the Padé approximation $r(x) = \dfrac{\sum\limits_{k = 0}^n p_k x^k}{\sum\limits_{k = 0}^m q_k x^k}$ for $f(x) = \sum\limits_{k = 1}^\infty a_k x^k$, it reduces to find the solution to$$
\begin{gmatrix}
a_0 &&&\\
a_1 & a_0 &&\\
\vdots & \ddots & \ddots &\\
a_{m + n} & \cdots & a_1 & a_0
\end{gmatrix} \begin{gmatrix}
q_0 \\ q_1 \\ \vdots \\ q_{m + n}
\end{gmatrix} = \begin{gmatrix}
p_0 \\ p_1 \\ \vdots \\ p_{m + n}
\end{gmatrix}, \tag{1}
$$
where $p_{n + 1} = \cdots = p_{m + n} = 0$, $q_{m + 1} = \cdots = q_{m + n} = 0$. In order to solve this system of equations, usually it is assumed that $q_0 = 1$ and (1) becomes$$
\begin{gmatrix}
a_0 &&\\
\vdots & \ddots &\\
a_{m + n - 1} & \cdots & a_0
\end{gmatrix} \begin{gmatrix}
q_1 \\ \vdots \\ q_{m + n}
\end{gmatrix} - \begin{gmatrix}
p_1 \\ \vdots \\ p_{m + n}
\end{gmatrix} = \begin{gmatrix}
a_1 \\ \vdots \\ a_{m + n}
\end{gmatrix},\ p_0 = a_0.
$$
Since\begin{align*}
&\mathrel{\phantom{=}}{} \begin{gmatrix}
a_0 &&\\
\vdots & \ddots &\\
a_{m + n - 1} & \cdots & a_0
\end{gmatrix} \begin{gmatrix}
q_1 \\ \vdots \\ q_{m + n}
\end{gmatrix} = \begin{gmatrix}
a_0 &&\\
\vdots & \ddots &\\
a_{m + n - 1} & \cdots & a_0
\end{gmatrix} \begin{gmatrix}
q_1 \\ \vdots \\ q_m \\ 0 \\ \vdots \\ 0
\end{gmatrix}\\
&= \begin{gmatrix}
a_0\\
\vdots & \ddots\\
a_{m - 1} & \cdots & a_0\\
a_m & \cdots & a_1 & 0\\
\vdots & \ddots & \vdots & \vdots & \ddots\\
a_{m + n - 1} & \cdots & a_n & 0 & \cdots & 0
\end{gmatrix} \begin{gmatrix}
q_1 \\ \vdots \\ q_m \\ 0 \\ \vdots \\ 0
\end{gmatrix} = \begin{gmatrix}
A & B\\
C & O
\end{gmatrix} \begin{gmatrix}
q_1 \\ \vdots \\ q_m \\ 0 \\ \vdots \\ 0
\end{gmatrix},
\end{align*}
where$$
A = \begin{gmatrix}
a_0\\
\vdots & \ddots\\
a_{m - 1} & \cdots & a_0
\end{gmatrix},\ B = -I_n,\ C = \begin{gmatrix}
a_m & \cdots & a_1\\
\vdots & \ddots & \vdots\\
a_{m + n - 1} & \cdots & a_n
\end{gmatrix},
$$
and $O$ is an $m × n$ zero matrix, and$$
-\begin{gmatrix}
p_1 \\ \vdots \\ p_{m + n}
\end{gmatrix} = -\begin{gmatrix}
p_1 \\ \vdots \\ p_n \\ 0 \\ \vdots \\ 0
\end{gmatrix} = \begin{gmatrix}
A & B\\
C & O
\end{gmatrix} \begin{gmatrix}
0 \\ \vdots \\ 0 \\ p_1 \\ \vdots \\ p_n
\end{gmatrix},
$$
then (1) is equivalent to$$
\begin{gmatrix}
A & B\\
C & O
\end{gmatrix} \begin{gmatrix}
q_1 \\ \vdots \\ q_m \\ p_1 \\ \vdots \\ p_n
\end{gmatrix} = \begin{gmatrix}
a_1 \\ \vdots \\ a_{m + n}
\end{gmatrix},\ p_0 = a_0. \tag{2}
$$
Now, to find the Padé approximation $r(x) = \dfrac{\sum\limits_{k = 0}^2 p_k x^k}{\sum\limits_{k = 0}^3 q_k x^k}$ for $f(x) = \mathrm{e}^{-x} = \sum\limits_{k = 1}^\infty \dfrac{(-1)^k}{k!} x^k$, from (2) there is $q_0 = 1$, $p_0 = 1$, and$$
\begin{gmatrix}
1 &&& -1\\
-1 & 1 &&& -1\\
\dfrac{1}{2} & -1 & 1\\
-\dfrac{1}{6} & \dfrac{1}{2} & -1\\
\dfrac{1}{24} & -\dfrac{1}{6} & \dfrac{1}{2}
\end{gmatrix} \begin{gmatrix}
q_1 \\ q_2 \\q_3 \\ p_1 \\ p_2
\end{gmatrix} = \begin{gmatrix}
-1 \\ \dfrac{1}{2} \\ -\dfrac{1}{6} \\ \dfrac{1}{24} \\ -\dfrac{1}{120}
\end{gmatrix},
$$
thus $q_1 = -\dfrac{3}{5}$, $q_2 = -\dfrac{3}{20}$, $q_3 = -\dfrac{1}{60}$, $p_1 = \dfrac{2}{5}$, $p_2 = -\dfrac{1}{20}$. Therefore,$$
r_{2, 3}(x) = \frac{1 + \dfrac{2}{5}x - \dfrac{1}{20} x^2}{1 - \dfrac{3}{5} x - \dfrac{3}{20} x^2 - \dfrac{1}{60} x^3}.
$$
Website
– Jon Apr 20 '18 at 00:40