Turns out you just need to get the eigenvalues, which will be complex and come in conjugate pairs. For each eigenvalue, find an eigenvector, make real vectors of the real and imaginary parts, if necessary use Gram-Schmidt to make that pair of vectors orthonormal. For this one, it was only necessary to adjust the lengths of the real vectors, dividing by either $\sqrt 6$ or $\sqrt 2$ once I multiplied through to make the entries integers.
The characteristic polynomial is $\left( x^2 - x + 1\right)^2,$ the minimal polynomial is $\left( x^2 - x + 1 \right)$. The eigenvectors I used for eigenvalue $\omega = (1 + i \sqrt 3)/2$ were
$$
\begin{pmatrix}
\omega & - \bar{\omega} \\
\bar{\omega} & \omega \\
1&0 \\
0&1
\end{pmatrix}
$$
Notice that $\omega = (1 + i \sqrt 3)/2$ fits with the observation by Doug M that $A^6 = I$, along with $A^3 = -I$.
$$
\begin{pmatrix}
0&0&\frac{\sqrt 6}{2}&0 \\
\frac{1}{\sqrt 2}&\frac{-1}{\sqrt 2}&0&\frac{1}{\sqrt 2} \\
0&0&0&\frac{\sqrt 6}{2} \\
\frac{1}{\sqrt 2}&\frac{1}{\sqrt 2}&\frac{-1}{\sqrt 2}&0
\end{pmatrix}
\begin{pmatrix}
\frac{1}{2}&\frac{-1}{2}&\frac{-1}{2}&\frac{-1}{2} \\
\frac{1}{2}&\frac{1}{2}&\frac{1}{2}&\frac{-1}{2} \\
\frac{1}{2}&\frac{-1}{2}&\frac{1}{2}&\frac{1}{2} \\
\frac{1}{2}&\frac{1}{2}&\frac{-1}{2}&\frac{1}{2} \\
\end{pmatrix}
\begin{pmatrix}
\frac{1}{\sqrt 6}&\frac{1}{\sqrt 2}&\frac{-1}{\sqrt 6}&\frac{1}{\sqrt 2} \\
\frac{1}{\sqrt 6}&\frac{-1}{\sqrt 2}&\frac{1}{\sqrt 6}&\frac{1}{\sqrt 2} \\
\frac{2}{\sqrt 6}&0&0&0 \\
0&0&\frac{2}{\sqrt 6}&0
\end{pmatrix}
=
\begin{pmatrix}
\frac{1}{2}&\frac{\sqrt 3}{2}&0&0 \\
\frac{-\sqrt 3}{2}&\frac{1}{2}&0&0 \\
0&0&\frac{1}{2}&\frac{\sqrt 3}{2} \\
0&0&\frac{-\sqrt 3}{2}&\frac{1}{2}
\end{pmatrix}
$$
$$
\left(
\begin{array}{cccc}
0&0&\frac{\sqrt 6}{2}&0 \\
\frac{1}{\sqrt 2}&\frac{-1}{\sqrt 2}&0&\frac{1}{\sqrt 2} \\
0&0&0&\frac{\sqrt 6}{2} \\
\frac{1}{\sqrt 2}&\frac{1}{\sqrt 2}&\frac{-1}{\sqrt 2}&0 \\
\end{array}
\right)
\left(
\begin{array}{cccc}
\frac{1}{\sqrt 6}&\frac{1}{\sqrt 2}&\frac{-1}{\sqrt 6}&\frac{1}{\sqrt 2} \\
\frac{1}{\sqrt 6}&\frac{-1}{\sqrt 2}&\frac{1}{\sqrt 6}&\frac{1}{\sqrt 2} \\
\frac{2}{\sqrt 6}&0&0&0 \\
0&0&\frac{2}{\sqrt 6}&0 \\
\end{array}
\right) =
\left(
\begin{array}{cccc}
1&0&0&0 \\
0&1&0&0 \\
0&0&1&0 \\
0&0&0&1 \\
\end{array}
\right)
$$
From notes by Mark F. Schumaker:
