How to get the first derivative of $f(X) = \log \det (XX^TA^{-1})$ with respect to $X$?
Where $X \in R^{n \times r}$, $A \in R^{n \times n}$, $A^{-1}$ is the inverse of $A$
How to get the first derivative of $f(X) = \log \det (XX^TA^{-1})$ with respect to $X$?
Where $X \in R^{n \times r}$, $A \in R^{n \times n}$, $A^{-1}$ is the inverse of $A$
Presumably $X$ has full row rank and $\det(A)>0$, otherwise $\det(XX^TA^{-1})\le0$ and its real logarithm does not exist. Perturb $X$ by a small $dX$, then the first-order change in the log determinant is given by \begin{align} d\log\det(XX^TA^{-1}) &=d\left(\log\det(XX^T)-\log\det(A)\right)\\ &=d\log\det(XX^T)\\ &=\operatorname{tr}\left((XX^T)^{-1}\,d(XX^T)\right)\ \text{ (Jacobi's formula)}\\ &=\operatorname{tr}\left((XX^T)^{-1}[(dX)X^T+X(dX)^T]\right)\\ &=2\operatorname{tr}\left((XX^T)^{-1}X(dX)^T\right)\ \text{ (tracial property)}. \end{align} Therefore $$ \frac{d\log\det(XX^TA^{-1})}{dX} :=\left(\frac{\partial\log\det(XX^TA^{-1})}{\partial x_{ij}}\right)_{i,j\in\{1,\ldots,n\}} =2(XX^T)^{-1}X=2(X^+)^T, $$ where $X^+$ denotes the Moore-Penrose pseudo inverse of $X$.