Let's see, it comes out that the original polynomial, let us write it in variables $w,x,y,z,$ is a difference of squares, meaning it also factors as the product of two linear forms. This is sufficiently unusual (with everything integers) that I would bet the question was constructed using the factoring.
$$ (w+x+2y)^2 - (x+y+z)^2 = \; \; (w + 2x + 3y + z)(w+y-z) $$
Notice how the product makes obvious the $3y^2,$ also $-z^2,$ but zero $x^2$ terms.
$$ P^T H P = D $$
$$\left(
\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
- 1 & 1 & 0 & 0 \\
- 1 & - 1 & 1 & 0 \\
1 & - 1 & 0 & 1 \\
\end{array}
\right)
\left(
\begin{array}{rrrr}
1 & 1 & 2 & 0 \\
1 & 0 & 1 & - 1 \\
2 & 1 & 3 & - 1 \\
0 & - 1 & - 1 & - 1 \\
\end{array}
\right)
\left(
\begin{array}{rrrr}
1 & - 1 & - 1 & 1 \\
0 & 1 & - 1 & - 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{array}
\right)
= \left(
\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & - 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\end{array}
\right)
$$
$$ Q^T D Q = H $$
$$\left(
\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
2 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 \\
\end{array}
\right)
\left(
\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & - 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\end{array}
\right)
\left(
\begin{array}{rrrr}
1 & 1 & 2 & 0 \\
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{array}
\right)
= \left(
\begin{array}{rrrr}
1 & 1 & 2 & 0 \\
1 & 0 & 1 & - 1 \\
2 & 1 & 3 & - 1 \\
0 & - 1 & - 1 & - 1 \\
\end{array}
\right)
$$
====================================================
algorithm: see http://math.stackexchange.com/questions/1388421/reference-for-linear-algebra-books-that-teach-reverse-hermite-method-for-symmetr
$$ H = \left(
\begin{array}{rrrr}
1 & 1 & 2 & 0 \\
1 & 0 & 1 & - 1 \\
2 & 1 & 3 & - 1 \\
0 & - 1 & - 1 & - 1 \\
\end{array}
\right)
$$
$$ D_0 = H $$
$$ E_j^T D_{j-1} E_j = D_j $$
$$ P_{j-1} E_j = P_j $$
$$ E_j^{-1} Q_{j-1} = Q_j $$
$$ P_j Q_j = I $$
$$ P_j^T H P_j = D_j $$
$$ Q_j^T D_j Q_j = H $$
$$ H = \left(
\begin{array}{rrrr}
1 & 1 & 2 & 0 \\
1 & 0 & 1 & - 1 \\
2 & 1 & 3 & - 1 \\
0 & - 1 & - 1 & - 1 \\
\end{array}
\right)
$$
==============================================
$$ E_{1} = \left(
\begin{array}{rrrr}
1 & - 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{array}
\right)
$$
$$ P_{1} = \left(
\begin{array}{rrrr}
1 & - 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; Q_{1} = \left(
\begin{array}{rrrr}
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; D_{1} = \left(
\begin{array}{rrrr}
1 & 0 & 2 & 0 \\
0 & - 1 & - 1 & - 1 \\
2 & - 1 & 3 & - 1 \\
0 & - 1 & - 1 & - 1 \\
\end{array}
\right)
$$
==============================================
$$ E_{2} = \left(
\begin{array}{rrrr}
1 & 0 & - 2 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{array}
\right)
$$
$$ P_{2} = \left(
\begin{array}{rrrr}
1 & - 1 & - 2 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; Q_{2} = \left(
\begin{array}{rrrr}
1 & 1 & 2 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; D_{2} = \left(
\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & - 1 & - 1 & - 1 \\
0 & - 1 & - 1 & - 1 \\
0 & - 1 & - 1 & - 1 \\
\end{array}
\right)
$$
==============================================
$$ E_{3} = \left(
\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & - 1 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{array}
\right)
$$
$$ P_{3} = \left(
\begin{array}{rrrr}
1 & - 1 & - 1 & 0 \\
0 & 1 & - 1 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; Q_{3} = \left(
\begin{array}{rrrr}
1 & 1 & 2 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; D_{3} = \left(
\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & - 1 & 0 & - 1 \\
0 & 0 & 0 & 0 \\
0 & - 1 & 0 & - 1 \\
\end{array}
\right)
$$
==============================================
$$ E_{4} = \left(
\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & - 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{array}
\right)
$$
$$ P_{4} = \left(
\begin{array}{rrrr}
1 & - 1 & - 1 & 1 \\
0 & 1 & - 1 & - 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; Q_{4} = \left(
\begin{array}{rrrr}
1 & 1 & 2 & 0 \\
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; D_{4} = \left(
\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & - 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\end{array}
\right)
$$
==============================================
$$ P^T H P = D $$
$$\left(
\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
- 1 & 1 & 0 & 0 \\
- 1 & - 1 & 1 & 0 \\
1 & - 1 & 0 & 1 \\
\end{array}
\right)
\left(
\begin{array}{rrrr}
1 & 1 & 2 & 0 \\
1 & 0 & 1 & - 1 \\
2 & 1 & 3 & - 1 \\
0 & - 1 & - 1 & - 1 \\
\end{array}
\right)
\left(
\begin{array}{rrrr}
1 & - 1 & - 1 & 1 \\
0 & 1 & - 1 & - 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{array}
\right)
= \left(
\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & - 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\end{array}
\right)
$$
$$ Q^T D Q = H $$
$$\left(
\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
2 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 \\
\end{array}
\right)
\left(
\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & - 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\end{array}
\right)
\left(
\begin{array}{rrrr}
1 & 1 & 2 & 0 \\
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{array}
\right)
= \left(
\begin{array}{rrrr}
1 & 1 & 2 & 0 \\
1 & 0 & 1 & - 1 \\
2 & 1 & 3 & - 1 \\
0 & - 1 & - 1 & - 1 \\
\end{array}
\right)
$$