There are some details that I haven't fully vetted but here's a long sketch which I believe should show divergence.
Define $c_n := \frac{n}{2\pi} \pmod 1$ and let $[a,b]$ be any interval in the torus $\mathbb R/\mathbb Z$. The discrepancy $D(N)$ of the sequence $c_n$ is defined to be the difference between $\# \{ n \le N : c_n \in [a,b]\}$ and the expected count $(b-a)N$.
Weyl's criterion tells us that $D(N) = o(N)$. More quantitatively, the Erdős-Turán inequality states that for any integer $K>0$,
$$D(N) \ll \frac{N}{K} + \sum_{k=1}^K \frac1k\left| \sum_{n=1}^N e^{kni}\right|.$$
While I imagine there are better ways to control the rightmost sum on average, it's a nice fact that we can control it pointwise using a result of Mahler that there exists an absolute constant $C>0$ such that
$$\left|\pi - \frac{p}{q}\right| \gg \frac{1}{q^C}.$$
(The current best value of $C$ is about $7.6$ due to Salikhov.) Note that $\left|\sum_{n=1}^N e^{kni}\right| \le 2(1-e^{ki})^{-1}$ by geometric series, and Mahler's theorem controls how close $k$ can be to a multiple of $2\pi$ and thereby how close $e^{ki}$ can be to $1$. This should give us $\left|\sum_{n=1}^N e^{kni}\right| \ll k^{C}$ uniformly in $N$, possibly with a different $C$.
By choosing $K$ to be a small power of $N$ (something like $N^{1/C}$) in Erdős-Turán, we get that $D(N) \le N^{1-c}$ for some absolute constant $c>0$.
For small $\epsilon >0$, let $A_\epsilon$ be the Bohr set $\{n \in \mathbb N: |\sin(n)| < \epsilon\}$. By the discrepancy bound, the counting function satisfies (ignoring a tiny error term from the non-linearity of sine):
$$A_\epsilon(N) := \{n \le N : n \in A_\epsilon\} = \frac{\epsilon}{\pi}N + O(N^{1-c}).$$
In particular, $A_\epsilon(N) \gg \epsilon N$ provided that $N > \epsilon^{-C}$. Using this with partial summation, we can estimate the contribution to the original sum from $A_\epsilon$:
$$\sum_{n \in A_\epsilon} \frac{1}{n^{1+|\sin(n)|}} \ge \sum_{n \in A_\epsilon} n^{-1-\epsilon} = \int_1^\infty (1+\epsilon) A_\epsilon(t) t^{-2-\epsilon}\, dt \ge \int_{\epsilon^{-C}}^\infty A_\epsilon(t) t^{-2-\epsilon}\, dt \gg \int_{\epsilon^{-C}}^\infty \epsilon t^{-1-\epsilon}\, dt,$$
which simplifies to $\epsilon^{C\epsilon}$.
Note that as $\epsilon \to 0$, $\epsilon^{C\epsilon} \to 1$. We're very close to getting divergence. Just apply the above calculation to the set $A_\epsilon \setminus A_{\epsilon/2}$. This has about the same counting function and still gives $$\sum_{n \in A_\epsilon \setminus A_{\epsilon/2}} \frac{1}{n^{1+|\sin(n)|}} \gg \epsilon^{C\epsilon}.$$
Now sum this over a dyadic sequence of $\epsilon_k = 2^{-k}$ so that the resulting sets are disjoint, and we get a divergent sum.