I was wondering whether this series is divergent:
$$\sum_{n=2}^{\infty}\frac{1}{n\log^{1+\sin(n)}(n)}$$
Using Cauchy's Condensation, we can say that:
$$\sum_{n=2}^{\infty}\frac{1}{n\log^{1+\sin(n)}(n)} \quad \text{diverges} \iff \sum_{n=1}^{\infty}\frac{1}{n^{1+\sin(n)}} \quad \text{diverges}$$
Can you help me going on? Thanks in advance.