So here is the problem, and what I've worked through.. Although I am not sure if I am doing it correctly, as it is very confusing to me. The goal is to find the interval and radius of convergence of a power series.
$\sum _{k=1}^{\infty }\:\frac{1}{k}\left(x-1\right)^{2k+1}$
$lim_{k→∞}|\frac{a_{k+1}}a|=lim_{k→∞}|\frac{1}{k}(x-1)^{(2(k+1)+1)}| |\frac{k}{1}*\frac{1}{(x-1)^{2k+1}}|=lim_{k→∞}|\frac{(x-1)^{2}*k}{k+1}|$
$lim_{k→∞}|\frac{\frac{(x-1)^2*k}{k+1}}{\frac{k}{k}+\frac{1}{k}}|=lim_{k→∞}|\frac{(x-1)^2}{1}|=lim_{k→∞}|(x-1)^2|<1$
$-1<(x-1)^2<1$
$0<x<2$
For $x=0$
$\sum_{k=1}^\infty\frac{1}{k}(0-1)^{2k+1}=\sum_{k=1}^\infty(-1)^{2k+1}*\frac{1}{k}\ = lim_{k\to\infty}|\frac{1}{k}|=0$
For $x=2$
$\sum_{k=1}^\infty\frac{1}{k}(2-1)^{2k+1}=\sum_{k=1}^\infty(1)^{2k+1}*\frac{1}{k}= lim_{k\to\infty}|\frac{a_{k+1}}{a_{k}}|=lim_{k\to\infty}\frac{\frac{1}{k+1}}{\frac{1}{k}}=lim_{k\to\infty}\frac{k}{k+1}\frac{\frac{1}{k}}{\frac{1}{k}}=1$
Therefore, the radius of convergence $r=\frac{2-0}{2}=1$, and the interval of convergence is $(0,2)$
I feel very confused when trying to work through these.