We have $$x^2-2\sqrt{2}x+1=(x-(1+\sqrt2))(x-(-1+\sqrt2))=0$$ so let $x_1=1+\sqrt2$ and $x_2=-1+\sqrt2$.
Let $a=\tan^{-1}(1+\sqrt2)$. Using the double angle tangent formula, $$\begin{align}\tan2a=\frac{2\tan a}{1-\tan^2a}&\implies\tan2a=\frac{2(1+\sqrt2)}{1-(1+\sqrt2)^2}=-1\end{align}$$ and hence taking the principal angle gives $$\tan^{-1}(1+\sqrt2)=\frac38\pi$$
Let $b=\tan^{-1}(-1+\sqrt2)$. Using the double angle tangent formula, $$\begin{align}\tan2b=\frac{2\tan b}{1-\tan^2b}&\implies\tan2b=\frac{2(-1+\sqrt2)}{1-(-1+\sqrt2)^2}=1\end{align}$$ and hence taking the principal angle gives $$\tan^{-1}(-1+\sqrt2)=\frac18\pi$$ Therefore $$\boxed{\tan^{-1}(x_1)\cdot\tan^{-1}(x_2)=\frac38\pi\cdot\frac18\pi=\frac3{64}\pi^2}$$ as desired.