When providing a counterexample for $0<f(x)=O(x^{1+\varepsilon})\;\forall\epsilon>0\Longrightarrow \int_{1}^{+\infty}\frac{dx}{f(x)}=+\infty$
I realized that the error of the approximation
$$ \mathcal{J}=\int_{1}^{+\infty}\frac{dx}{x\log^2(x+1)}\approx 2$$
is less than $7\cdot 10^{-3}$.
Q: Is such approximate identity just a numerical coincidence, or is there some reason for expecting in advance that the RHS is very close to $2$?
Of course from $$ \mathcal{J}=\int_{0}^{+\infty}\frac{2\,dt}{\left(t+\log\left(2\cosh t\right)\right)^2}$$ it is not hard to believe that $\mathcal{J}\approx\int_{0}^{+\infty}\frac{2\,dt}{(t+\log 2)^2}=\frac{2}{\log 2}$ or that $$ \mathcal{J}\approx\int_{0}^{+\infty}\frac{2\,dt}{\left(t+\log(2)-1+\sqrt{1+t^2}\right)^2}$$ where the RHS has an explicit form involving a lot of $(\log 2)$s, namely $$ \frac{2\log\log 2+\frac{2}{\log 2}-\log^2 2+2\log 2-3}{(1-\log 2)^3}=2.014532719\ldots$$ Small addendum: by exploiting $\frac{1}{\log^2(x+1)}=\int_{0}^{+\infty}s(x+1)^{-s}\,ds$ we also have $$ \mathcal{J}= \int_{0}^{+\infty}{}_2 F_1\left(s,s;s+1;-1\right)\,ds$$ where the integrand function is way less elementary but much more well-behaved.
$$\int_1^{10^9} f(x)\ dx \approx 1.9453$$
$$\int_1^{10^{12}} f(x)\ dx \approx 1.95737$$
$$\int_1^{10^{17}} f(x)\ dx \approx 1.9453$$
$$\int_1^{10^{21}} f(x)\ dx \approx 1.96212$$
$$\int_1^{10^{23}} f(x)\ dx \approx 2.01638$$
$$\int_1^{10^{40}} f(x)\ dx \approx 0.841742$$
and so on.
– Enrico M. Mar 09 '18 at 19:00