Let $R$ be a commutative unital ring, $A$ an associative unital $R$-algebra, $I$ an arbitrary set, and $\mathfrak{a}$ an ideal of $R[x_i; i\!\in\!I]$. If $A$ is commutative, then there is an isomorphism of $R$-algebras
$$R[x_i,i\!\in\!I]/\mathfrak{a} \otimes A \:\cong\: A[x_i,i\!\in\!I]/\mathfrak{a}1_A,$$
where $\mathfrak{a}1_A$ denotes the ideal of $A[x_i,i\!\in\!I]$, generated by $\{1_Af(x); f(x)\!\in\!\mathfrak{a}\}$. For example, there is an isomorphism of $\mathbb{Z}$-algebras $\mathbb{Z}_3\,\otimes\,\mathbb{Z}[x,y]/\langle\langle 1\!+\!3x^2\!-\!5xy\rangle\rangle \:\cong\: \mathbb{Z}_3[x,y]/\langle\langle 1\!-\!2xy\rangle\rangle$.
Question 1: Is everything correct?
Question 2: Does the isomorphism still hold when $A$ is noncommutative? Must $A$ be replaced with $A^\mathrm{op}$ on the right hand side?