Hint 1: If you know the answer for $\sum\limits_{k=1}^{2n-1}\csc^2\left(\frac{k}{2n}\pi\right)$, then use
$$
\sum_{k=1}^n\csc^2\left(\frac{2k-1}{2n}\pi\right)+\sum_{k=1}^{n-1}\csc^2\left(\frac{k}{n}\pi\right)=\sum_{k=1}^{2n-1}\csc^2\left(\frac{k}{2n}\pi\right)
$$
Hint 2: $\frac{2n/z}{z^{2n}-1}$ has residue $1$ at $z=e^{\pi ik/n}$ and residue $-2n$ at $z=0$.
Apply Hint 2
$$
\begin{align}
\left(\frac{2i}{z-\frac1z}\right)^2\frac{2n/z}{z^{2n}-1}
&=\frac{-4z^2}{z^4-2z^2+1}\frac{2n/z}{z^{2n}-1}\\
&=\left(\frac1{(z+1)^2}-\frac1{(z-1)^2}\right)\frac{2n}{z^{2n}-1}
\end{align}
$$
has residue $\csc^2\left(\pi k/n\right)$ at $z=e^{\pi ik/n}$ except at $z=\pm1$. A bit of computation gives
$$
\begin{align}
\frac{2n}{z^{2n}-1}
&=\phantom{+}\frac1{z-1}-\frac{2n-1}2+\frac{(2n-1)(2n+1)}{12}(z-1)+O\!\left((z-1)^2\right)\\
&=-\frac1{z+1}-\frac{2n-1}2-\frac{(2n-1)(2n+1)}{12}(z+1)+O\!\left((z+1)^2\right)
\end{align}
$$
Therefore,
$$\newcommand{\Res}{\operatorname*{Res}}
\Res_{z=1}\left(\frac1{(z+1)^2}-\frac1{(z-1)^2}\right)\frac{2n}{z^{2n}-1}
=\frac14-\frac{4n^2-1}{12}=-\frac{n^2-1}3
$$
and
$$
\Res_{z=-1}\left(\frac1{(z+1)^2}-\frac1{(z-1)^2}\right)\frac{2n}{z^{2n}-1}
=\frac14-\frac{4n^2-1}{12}=-\frac{n^2-1}3
$$
Since the sum of the residues at all the singularities is $0$, we get that half the sum over the singularities except at $z=\pm1$ is
$$
\sum_{k=1}^{n-1}\csc^2\left(\frac{k}{n}\pi\right)=\frac{n^2-1}3
$$
Apply Hint 1
$$
\begin{align}
\sum_{k=1}^n\csc^2\left(\frac{2k-1}{2n}\pi\right)
&=\sum_{k=1}^{2n-1}\csc^2\left(\frac{k}{2n}\pi\right)
-\sum_{k=1}^{n-1}\csc^2\left(\frac{k}{n}\pi\right)\\
&=\frac{4n^2-1}3-\frac{n^2-1}3\\[9pt]
&=n^2
\end{align}
$$