1

Find $$\lim_{n\to \infty} n\left(\frac{1}{(n+1)^2}+\frac{1}{(n+2)^2}+\cdots+\frac{1}{(n+n)^2} \right)$$

I have tried to use definite integrals. Unfortunately, I am unable to remove the '$n$' terms from my function, due to which the function isn't being converted into $x$ terms. Any suggestions or alternatives please? (I took $\Delta x$ as $n$ and $x_i$ as in)

Picasso
  • 441

1 Answers1

4

\begin{align} \lim_{n \to \infty} n \left[ \frac{1}{(n+1)^2}+ \cdots +\frac{1}{(n+n)^2} \right] &=\lim_{n \to \infty} n \left[ \frac{1}{n^2(1+1/n)^2}+ \cdots +\frac{1}{n^2(1+n/n)^2} \right]\\&=\lim_{n \to \infty} \frac 1n\left[ \frac{1}{(1+1/n)^2}+\cdots +\frac{1}{(1+n/n)^2} \right]\\ &=\lim_{n \to \infty}\frac 1n\left[ \sum_{r=1}^n \frac{1}{(1+r/n)^2} \right]\\ &=\int_{0}^1 \frac{1}{(1+x)^2} \,{\rm d}x \end{align}

Ѕᴀᴀᴅ
  • 34,263
Jaideep Khare
  • 19,293