Referring to the standard results here, the centre is given by
$$(h,k)=
\left(
\frac{2CD-BE}{B^2-4AC}, \frac{2AE-BD}{B^2-4AC}
\right)$$
and the transformed conics is
$$\frac{A+C \color{red}{\pm} \sqrt{(A-C)^{2}+B^{2}}}{2} X^2+
\frac{A+C \color{red}{\mp} \sqrt{(A-C)^{2}+B^{2}}}{2} Y^2+
\frac
{\det
\begin{pmatrix}
A & \frac{B}{2} & \frac{D}{2} \\
\frac{B}{2} & C & \frac{E}{2} \\
\frac{D}{2} & \frac{E}{2} & F
\end{pmatrix}}
{\det
\begin{pmatrix}
A & \frac{B}{2} \\
\frac{B}{2} & C \\
\end{pmatrix}}=0$$
It's just simply re-scaling the constant term $F$, that is
$$Ax^2+Bxy+Cy^2+Dx+Ey+\color{blue}{F'}=0$$ where
$$p^2
\det
\begin{pmatrix}
A & \frac{B}{2} & \frac{D}{2} \\
\frac{B}{2} & C & \frac{E}{2} \\
\frac{D}{2} & \frac{E}{2} & F
\end{pmatrix}
=
\det
\begin{pmatrix}
A & \frac{B}{2} & \frac{D}{2} \\
\frac{B}{2} & C & \frac{E}{2} \\
\frac{D}{2} & \frac{E}{2} & \color{blue}{F'}
\end{pmatrix}$$
On solving,
$$\color{blue}{F'}=
\frac{1}
{\det
\begin{pmatrix}
A & \frac{B}{2} \\
\frac{B}{2} & C \\
\end{pmatrix}}
\left[
\frac{AE^2+CD^2-BDE}{4}+p^2
\det
\begin{pmatrix}
A & \frac{B}{2} & \frac{D}{2} \\
\frac{B}{2} & C & \frac{E}{2} \\
\frac{D}{2} & \frac{E}{2} & F
\end{pmatrix}
\right]
$$