Motivated by this question, I find the following recurrence relation for the exponential function (source, formula 25): \begin{align} a_n&=n(a_{n-1}+1)& 1+e/a_1=\prod_{n=1}^\infty(1+a_n^{-1}) \end{align} I'm looking for a proof of the formula on the right.
The explicit formula for $a_n$ is given by: \begin{align} \frac{a_n}{n!} &=\frac{a_{n-1}}{(n-1)!}+\frac 1{(n-1)!}\\ &=a_1+\sum_{k=0}^{n-1}\frac 1{k!}\\ &\to a_1+e \end{align} hence $a_n\sim (a_1+e)n!$ as $n\to\infty$. Any idea for to prove the convergence of the infinite product to $e^{1/a_1}$?