If $a,b$ are the roots of the equation $$(\arcsin x+\arctan x)p^2+25p\pi+2(\arccos x+\operatorname{arccot} x)=0$$
Then minimum of $(a+1)(b+1)$
Try: $$a+b=\frac{25\pi}{\arcsin x+\arctan x}$$ and $$ab=\frac{2(\arccos x+\operatorname{arccot} x)}{\arcsin x+\arctan x}$$
So $$ab+a+b+1=\frac{25\pi+2(\arccos x+\operatorname{arccot} x)}{\arcsin x+\arctan x}$$
Could some help me to solve it, thanks