0

How to find the following intergal:

$$\mathcal{I}_\text{n}:=\int_0^\infty\frac{x^\text{n}}{1+x^2}\space\text{d}x\tag1$$

I've no idea where to start, I've tried integration by parts but it lead not to a closed form.

Jaideep Khare
  • 19,293
Jan Eerland
  • 28,671

2 Answers2

4

Maybe like so. Note that:

$$\int_0^{\infty } \exp (-x t) \sin (t) \, dt=\frac{1}{1+x^2}$$

so,

$$\color{red}{\int_0^{\infty } \frac{x^n}{1+x^2} \, dx}=\\\int_0^{\infty } \left(\int_0^{\infty } x^n \exp (-x t) \sin (t) \, dx\right) \, dt=\\\int_0^{\infty } t^{-1-n} \Gamma (1+n) \sin (t) \, dt=\\-\Gamma (-n) \Gamma (1+n) \sin \left(\frac{n \pi }{2}\right)=\\\color{red}{\frac{1}{2} \pi \sec \left(\frac{n \pi }{2}\right)}$$

for: $\color{red}{-1<\Re(n)<1}$

Addition: $-\Gamma (-n) \Gamma (1+n)=\pi \csc (n \pi )$

2

I don't have full answer, but I may give an idea by finding pattern and then using Induction.

  • First, if $n=1$, we have $$ \int \frac{x}{1+x^{2}}dx = \int \frac{1}{2} \frac{d(1+x^{2})}{dx} dx = \frac{1}{2} \ln(1+x^{2}) $$
  • Second, if $n=2$, we have $$ \int \frac{x^{2}}{1+x^{2}}dx = \int 1 - \frac{1}{1+x^{2}} dx = x - \tan^{-1}(x) $$

  • Third, if $n=3$, we have $$ \int \frac{x^{3}}{1+x^{2}}dx = x(x-\tan^{-1}(x)) - \int(x-\tan^{-1}(x))dx $$ Note that $\int \tan^{-1}(x)dx = x \tan^{-1}(x) - \frac{\ln(1+x^{2})}{2} $ (reference) so we have $$ \int \frac{x^{3}}{1+x^{2}}dx = \frac{x^{2}}{2}-\frac{\ln(1+x^{2})}{2} $$

  • Fourth, if $n=4$, we have $$ \int \frac{x^{4}}{1+x^{2}}dx = \int \frac{x^{4}-1+1}{1+x^{2}} dx $$ $$ = \int (x^{2}-1) + \frac{1}{1+x^{2}} dx = \frac{x^{3}}{3} -x + \tan^{-1}(x)$$
  • Continue until you found a pattern .....

    You can see that when $n=1$ and $n=3$ we have only two types : even degree power plus $0.5 \ln(1+x^{2})$. While when $n=2$ and $n=4$, we have only two types : odd degree power plus $\tan^{-1}(x)$. You could found a pattern here, then use induction to prove it.

Hope this helps.

Redsbefall
  • 4,845