The way you started and since $\left(a_n\right)_{n\in\mathbb{N}}$ and $\left(b_n\right)_{n\in\mathbb{N}}$ are positive then for partial sums we have
$$0\leq\sum\limits_{n=1}^{k} a_nb_n\leq \left(\sum\limits_{n=1}^{k} a_n\right)\left(\sum\limits_{n=1}^{k} b_n\right)$$
The limit has the property to preserve the inequality (number 7 down the list), then
$$0\leq\lim\limits_{k\rightarrow\infty}\sum\limits_{n=1}^{k} a_nb_n\leq \lim\limits_{k\rightarrow\infty}\left(\sum\limits_{n=1}^{k} a_n\right)\left(\sum\limits_{n=1}^{k} b_n\right) =\lim\limits_{k\rightarrow\infty} \left(\sum\limits_{n=1}^{k} a_n\right)\cdot \lim\limits_{k\rightarrow\infty} \left(\sum\limits_{n=1}^{k} b_n\right) $$
which is
$$0\leq \sum\limits_{n=1} a_nb_n\leq \left(\sum\limits_{n=1} a_n\right)\cdot \left(\sum\limits_{n=1}b_n\right) $$
Since we know that $0\leq\sum\limits_{n=1}a_n < \infty$ and $0\leq\sum\limits_{n=1}b_n < \infty$, thus we have $0\leq \sum\limits_{n=1} a_nb_n <\infty$
Another way, since $0\leq\sum\limits_{n=1}b_n < \infty$ then $\lim\limits_{n\rightarrow\infty}b_n=0$ which also means $\left(b_n\right)_{n\in\mathbb{N}}$ is bounded or $0\leq b_n < M, \forall n\in\mathbb{N}$. Then
$$0\leq\sum\limits_{n=1}^{k} a_nb_n\leq M \left(\sum\limits_{n=1}^{k} a_n\right)$$
Taking the limit
$$0\leq\sum\limits_{n=1} a_nb_n\leq M \left(\sum\limits_{n=1} a_n\right)<\infty$$