Let $\{a_n\}$ be a sequence of positive numbers such that $\lim_{n\to \infty} a_n = L$. Prove that $$\lim_{n\to \infty} (a_1a_2\ldots a_n)^{\frac 1n} = L$$
(Also given HINT: Let $a>0$. Then $\lim_{n\to\infty} a^{\frac 1n}=1$) What I have so far: $$\text{Let}\:\epsilon>0.\:\text{Then}\;\exists\;N\in\mathrm{I}\!\mathrm{N}\;\text{such that}\;n\ge N.$$$$\text{Then}\;L-\epsilon\lt a_n \lt L + \epsilon$$ $$\text{Let}\; b_n =(a_1a_2\ldots a_n)^{\frac 1n} \text{for}\; n\ge N$$ $$\text{Now}\;b_n = (a_1a_2\ldots a_N)^{\frac 1n}(a_{N+1}\ldots a_n)^{\frac 1n}$$ I am struggling with how to use the given hint and maybe limit superior/inferior facts to prove the limit is L. Any tips would be greatly appreciated. Also this is my first time using MathJax so please let me know if I have made any mistakes. Thank you.
EDIT: I'm looking specifically on how to prove it using $\limsup$ or $\liminf$ properties!