Define $T: L^2(\mathbb{R})\to L^2(\mathbb{R})$ by $(Tf)(x)=\int_{\mathbb{R}}\frac{f(y)}{1+|x|+|y|}dy$.
Is this operator bounded? If it is, then is it also compact?
I got stuck in simply applying Cauchy-Schwarz inequality to show it is bounded.
Any hint on this problem? Thanks in advance!
Remark:
1, I have tried to set $f_n(y)=\frac{1}{\sqrt{n}}1_{[0,n]}$, then $\{||Tf_n||_2\} $ are uniformly bounded, so I guess $T$ is a bounded operator.
More details as following:
As above, take $f_n(y)=\frac{1}{\sqrt{n}}1_{[0,n]}$, then $(Tf_n)(x)=\frac{1}{\sqrt{n}}\int_0^n\frac{1}{1+|x|+y}dy$,
so $||Tf_n||_2^2=\int_{\mathbb{R}^1}\frac{1}{n}|\int_0^n\frac{1}{1+|x|+y}dy|^2dx=\int_{\mathbb{R}^1}\frac{1}{n}(ln(1+|x|+y)|_{y=0}^{y=n})^2dx=\int_{\mathbb{R}^1}\frac{1}{n}(ln(\frac{1+|x|+n}{1+|x|}))^2dx=\frac{2}{n}\int_0^{\infty}(ln(\frac{1+x+n}{1+x}))^2dx=\frac{2}{n}\int_1^{\infty}(ln(1+\frac{n}{y}))^2dy\overset{z=\frac{n}{y}}{=}2\int_{0}^n\frac{ln(1+z)^2}{z^2}dz\leq 2\int_{0}^{\infty}\frac{ln(1+z)^2}{z^2}dz$, while since $z\to 0, \frac{ln(1+z)^2}{z^2}\to 1; z\to\infty, \frac{ln(1+z)^2}{z^2}\leq \frac{1}{z^{1+\epsilon}}, \forall 0<\epsilon<1$, so value of this integral is finite.
2, Note that the kernel $K(x,y)=\frac{1}{1+|x|+|y|}$ appearing here does not belong to $L^2(\mathbb{R})$; otherwise, all the problems can be solved, for example, see Hilbert-Schmidt operator