Could you help me to show the following:
The operator $$ T(f)(x) = \int _0^\infty \frac{f(y)}{x+y}dy $$ satisfies $$\Vert T(f)\Vert_p \leq C_p \Vert f\Vert_p $$ for $1 <p< \infty$ where $$ C_p = \int_0^\infty \frac{t^{-1/p}}{t+1}dt $$
Thanks a lot!