I am particularly curious about exchanging the sum and integral in the third equation, if this is unjustified then please let me know.
We have that
$$\lim_{n \to \infty} n \int_{1}^{\infty}\frac{dx}{1+x^n} =\lim_{a \to \infty}\lim_{n \to \infty} n \int_1^{a}\frac{dx}{1+x^n} $$
Also
$$\frac{1}{1+x^n} = \frac{1}{x^n}\frac{1}{1+\frac{1}{x^n}} = \sum_{i=0}^{\infty}\bigg(\frac{-1}{x^n}\bigg)^i\frac{1}{x^n} =\sum_{i=0}^{\infty}(-1)^i \frac{1}{x^{(i+1)n}}$$
Since we are integrating for $x \geq 1$, the above series converges for every $x$ so we may integrate term-by-term to obtain
$$n \int_1^{a}\frac{1}{1+x^n}dx = n\sum_{i=0}^{\infty}\int_1^{a}\frac{1}{x^{(i+1)n}} \, dx$$
$$= n\left[\frac{1}{n-1}-\frac{1}{2n-1}+\cdots\right]-n\left[\frac{a^{1-n}}{n-1}-\frac{a^{1-2n}}{2n-1}+\cdots\right] $$
where the second term goes to zero as $n$ goes to infinity. Further, we have that
$$\lim_{n \to \infty}\frac{n}{nk-1} = \frac{1}{k}$$
so the first term becomes $1 -\frac{1}{2}+\frac{1}{3}-... = \ln(2)$. In conclusion we get
$$\lim_{a \to \infty}\lim_{n \to \infty} n \int_1^{a}\frac{dx}{1+x^n} =\lim_{a \to\infty} \ln(2) = \ln(2) $$
independently of $a$.