Note: there is no known closed form for $\int x^x \, \mathrm dx$.
But since we have bounds, we can use froggie's approach in this answer.
Recall that: $$\int_0^1 x^x\, \mathrm dx = \sum_{k=0}^\infty \frac{1}{k!}\int_0^1x^k(\log x)^k\, \mathrm dx$$
Make the substitution $u = -\log x$
$$\int_0^1 x^x\, \mathrm dx = \sum_{k=0}^\infty \frac{1}{k!}\int_0^1x^k(\log x)^k\, \mathrm dx = \sum_{k=0}^\infty \frac{(-1)^k}{k!}\int_0^\infty e^{u(k+1)}u^k\, \mathrm du$$$$ = \sum_{k=0}^\infty \frac{(-1)^k}{k!}\frac{1}{(k+1)^k}\int_0^\infty e^{u(k+1)}((k+1)u)^k\, \mathrm du$$
Make the substitution $t = (k+1)u$
$$\sum_{k=0}^\infty \frac{(-1)^k}{k!}\frac{1}{(k+1)^k}\int_0^\infty e^tt^k\, \mathrm dt = \sum_{k=0}^\infty \frac{(-1)^k}{(k+1)!}\frac{1}{(k+1)^k}\Gamma(k+1),$$ where $\Gamma$ is the usual Gamma function. Since $\Gamma(k+1) = k!$, the final expression is $$ \sum_{k=0}^\infty \frac{(-1)^k}{(k+1)^{k+1}} = \sum_{n=1}^\infty \frac{(-1)^{n-1}}{n^n}$$