2

Given $x,y,z>0$ such that $xyz=1$ Prove that: $\frac{x^7}{x^8+1}+\frac{y^7}{y^8+1}+\frac{z^7}{z^8+1}\leq \frac{3}{2}$ P/s: I tried to solve it by AM-HM but I failed

Analyn_a
  • 309
  • 1
  • 6

1 Answers1

4

since \begin{align*} &\frac34-\frac34\cdot\frac1{x^{12}+x^6+1}-\frac{x^7}{x^8+1}\\ ={}&\frac{x^6(x-1)^2(3x^{12}+2x^{11}+x^{10}-x^8-2x^7-2x^5-x^4+x^2+2x+3)}{4(x^{12}+x^6+1)(x^8+1)} \end{align*} and \begin{align*} 2x^{11}+2x&\geqslant2x^7+2x^5,\\ x^{10}+x^2&\geqslant x^8+x^4, \end{align*} we get $$\frac{x^7}{x^8+1}\leqslant\frac34-\frac34\cdot\frac1{x^{12}+x^6+1},$$ so, just need to prove $$\frac94-\frac34\sum\frac1{x^{12}+x^6+1}\leqslant\frac32,$$ or $$\sum\frac1{x^{12}+x^6+1}\geqslant1,$$ or equivalent to: $a$, $b$, $c>0$, $abc=1$, prove that $$\sum\frac1{a^2+a+1}\geqslant1,$$ which is well-known.

kuing
  • 86