Find the length of $\{z \in \mathbb C: |z-1|+|z+1|=4\}$.
If we could write $z=x+iy$, then this is an ellipse of the form $$\frac{x^2}{4}+\frac{y^2}{3}=1$$ So $x=2\cos t, y=\sqrt{3}\sin t$, so the path is $$\gamma(t)=2\cos t+i\sqrt{3}\sin t, t \in [0, 2\pi]$$ Thus, the primeter of the ellipse is $$\begin{aligned} \int^{2\pi}_0|\gamma'(t)|dt & =\int^{2\pi}_0|-2\sin t +i\sqrt{3}\cos t|dt\\ & =\int^{2\pi}_0 \sqrt{4\sin^2t+3\cos^2t}dt\\ & =\int^{2\pi}_0\sqrt{3+\sin^2t}dt \end{aligned}$$ Any help with how to go any further? Thanks~