This can be solved readily in the complex plane as follows. The arc length is given by
$$s=\int |\dot z|~du,\quad z=z(u)$$
For a generic ellipse we then have
$$
\begin{align}
&z=a\cos\theta+ib\sin\theta,\quad \theta\in[0,2\pi]\\
&\dot z=-a\sin\theta+ib\cos\theta\\
&|\dot z|=\sqrt{a^2\sin^2\theta+b^2\cos^2\theta}=b\sqrt{\left(\frac{a^2-b^2}{b^2}\right)\sin^2\theta+1}\\
\end{align}
$$
We then find
$$
\begin{align}
s
&=\int_0^{2\pi}b\sqrt{A\sin^2\theta+1}~d\theta,\quad A=\left(\frac{a^2-b^2}{b^2}\right)\\
\\
&=4b\text{E}(-A)=4b\frac{\pi}{2}~ _2\text{F}_1\left(-\frac 12,\frac 12;1;-A \right)
\end{align}
$$
where $\text{E}$ is the complete elliptic integral of the second kind, expressed as $\text{E}(k^2)$ and $_2\text{F}_1$ is the Gauss hypergeometric funciton. For $a=3,\ b=2$ we find that
$$s\approx15.8654$$