$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
\lim_{n\to \infty}\sum_{r = 1}^{n}{r \over n^{2} + n + r} & =
\lim_{n\to \infty}\bracks{%
{1 \over n}\sum_{r = 1}^{n}{r \over n} +
\sum_{r = 1}^{n}\pars{{r \over n^{2} + n + r} - {r \over n^{2}}}}
\\[5mm] & =
\lim_{n\to \infty}\bracks{%
{1 \over n}\sum_{r = 1}^{n}{r \over n} -
\sum_{r = 1}^{n}{nr + r^{2} \over \pars{n^{2} + n + r}n^{2}}}
\end{align}
Note that
$$
0 < \sum_{r = 1}^{n}{nr + r^{2} \over \pars{n^{2} + n + r}n^{2}} <
\sum_{r = 1}^{n}{2n^{2} \over \pars{n^{2} + n + 1}n^{2}} = {2n \over n^{2} + n + 1}\,\,\,\stackrel{\mrm{as}\ n\ \to\ \infty}{\to}\,\,\,{\large 0}
$$
such that
\begin{align}
\lim_{n\to \infty}\sum_{r = 1}^{n}{r \over n^{2} + n + r} & =
\lim_{n\to \infty}\pars{%
{1 \over n}\sum_{r = 1}^{n}{r \over n}} = \int_{0}^{1}x\,\dd x = \bbx{1 \over 2}
\end{align}