Question: Evaluate lim$_{n\rightarrow\infty}$$\left[\frac{\left(n+1\right)\left(n+2\right).....\left(n+n\right)}{n^{n}}\right]^{\frac{1}{n}}$
My Approach Let $a_{n}=\frac{\left(n+1\right)\left(n+2\right).....\left(n+n\right)}{n^{n}}$
$$a_{n+1}=\frac{\left(n+2\right)\left(n+3\right).....\left(2n+2\right)}{\left(n+1\right)^{\left(n+1\right)}}$$
$$\lim_{n\rightarrow\infty}\frac{a_{n+1}}{a_{n}}=\frac{4}{\exp (1)}$$
Using Cauchy's second theorem On Limits
Lim$_{n\rightarrow\infty}\left[\frac{a_{2}}{a_{1}}\frac{a_{3}}{a_{2}}..........\frac{a_{n+1}}{a_{n}}\right]^{\frac{1}{n}}$=Lim$_{n\rightarrow\infty}$$\left[\frac{a_{n+1}}{a_{1}}\right]^{\frac{1}{n}}=\frac{4}{\exp(1)}$
Now I don't know how to move forward