Problem
Let $A$, $B \in M_n(\mathbb{C})$. Suppose the eigenvalues of $A$, $B$ are all non-negative real numbers, and that null($A$) $=$ null($A^2$) and null($B$) $=$ null($B^2$). If $A^2 = B^2$, prove that $A=B$.
Problem
Let $A$, $B \in M_n(\mathbb{C})$. Suppose the eigenvalues of $A$, $B$ are all non-negative real numbers, and that null($A$) $=$ null($A^2$) and null($B$) $=$ null($B^2$). If $A^2 = B^2$, prove that $A=B$.